Creating Voronoi Diagrams Using Delaunay Tetrahedralisations

Trinity College Dublin

Seán Martin

March 20, 2017

Abstract

A method for computing and visually displaying the Voronoi diagram and Delaunay triangulation of point sets is presented in two and three dimensions, and supplemented by C code. Firstly the Bowyer Watson algorithm is implemented to produce the Delaunay triangulation and the Voronoi diagram is extracted from this. This project begins by defining the relevant geometrical notions, then moves on to discussion of the algorithms and data structures that are used, ending with results, applications and C code.

Declaration

This thesis is my own work except where due citations are given. I have read and I understand the plagiarism provisions in the General Regulations of the University Calendar for the current year, found at http://www.tcd.ie/calendar.

I have also completed the Online Tutorial on avoiding plagiarism 'Ready Steady Write', located at http://tcd-ie.libguides.com/plagiarism/ready-steady-write.

Acknowledgements

Many thanks to my supervisor, Prof. Colm Ó Dúnlaing for all the help and guidance with this project, I'm not sure where I would have even started without him. A former TCD student, Andrew Farrell produced a thesis with Prof. Ó Dúnlaing which I found very useful, but ultimately does not appear anywhere in this document [Far95]. Finally, thanks to family and friends for dealing with exclamations of "Why won't this work!" and "I just don't understand!".

Contents

In	trod	uction	4			
1	Def	initions	5			
	1.1	Triangulations of Point Sets	5			
	1.2	Convex Polytopes				
	1.3	Delaunay Triangulations				
	1.4	Voronoi Diagrams				
	1.5	Describing Duality				
2	Boy	vyer Watson Algorithm	8			
	2.1	Algorithm Description	8			
	2.2	Degeneracies				
	2.3	Correctness	10			
3	Voronoi Diagram Construction 1					
	3.1	Two Dimensions: Pseudocode	12			
	3.2	Obtaining a Voronoi Region				
	3.3	Unbounded Voronoi Edges				
	3.4	Three Dimension Specifics				
4	Imp	portant Formulae	15			
	4.1	Orientation Check	15			
	4.2	Empty Circle Check				
	4.3		17			
5	Data Structures and Efficiency 18					
	5.1	Data Structures	18			
	5.2	Keeping Track of Adjacencies				
	5.3	Hilbert Curve				

	5.4	Time savings	23		
6	Results and Applications				
	6.1	Results in Two Dimensions	24		
	6.2	Results in Three Dimensions	28		
	6.3	Applications	30		
7	Problems and Conclusion				
	7.1	Implementation Flaws	31		
	7.2	Problems Encountered	31		
	7.3	Conclusion	32		
Bibliography					
\mathbf{A}	ppen	dix: Code	34		
	Shor	rt Header File	34		
	Thre	ee Dimensional C Code	34		
	Two	Dimensional C Code Snippets	51		

Introduction

Delaunay triangulations and Voronoi diagrams were theorised in reverse order to how we shall use them. The origin of the Voronoi diagram dates back to the 17th century with illustrations in René Descartes' *Principia philosophiae* resembling the modern Voronoi Diagram [Des44] (See pg. 78). The following historical account is from Klein and Aurenhammer [AK00]. They explain how Descartes' illustrations show a decomposition of space into convex regions, each consisting of matter revolving around one of the fixed stars.

Figure 1: Extracted from [Des44]. Descartes' decomposition of space - for example the bounded convex polygon surrounding the vertex f resembles a Voronoi region.

Although Descartes did not formally define the Voronoi diagram, he certainly lay the foundations for Dirichlet and Voronoi to formally introduce the concept. Hence the alternative name Dirichlet tesselation. Voronoi himself was the first to consider the dual of the Voronoi Diagram, where any two points whose Voronoi regions have boundary in common are connected by an edge. Delaunay later defined the Delaunay triangulation, and found it to be the same as the dual of the Voronoi Diagram. We will be going in the opposite direction; using the Delaunay triangulation to compute its dual, the Voronoi Diagram.

Both the Voronoi diagram and Delaunay triangulation of point sets have widespread applications (as do more general versions, which deal with convex 'sites' - instead of points [HÓDY07], or perhaps have fuzzy edges). For example, the Voronoi diagram has applications in natural growth models, city planning, organic texture generation, and geostatistics. Furthermore, much research has been devoted to their study, and much literature on the topic is very recent. For those who would be interested in

further reading, or perhaps improving this implementation, I would highly recommend referring to [LS05] which breaks down five different implementations of 3D Delaunay triangulation. Another option is somewhat older but, [GS85] presents a very interesting Quad-Edge data structure, and computes Delaunay triangulations using subdivisions of manifolds.

Before we begin, let us make one note about terminology. We shall use the term *Delaunay triangulation* as a general term for cases with points in \mathbb{R}^d and the term *Delaunay tetrahedralisation* to refer spefically to the case with points in \mathbb{R}^3 . Generally speaking, the 2D case will be discussed as it is easier to visualise and is readily adapted to 3D.

The general structure of this project will be as follows. We define the Delaunay triangulation and Voronoi diagram and how they are dual. Next we move on to the Bowyer Watson algorithm, its correctness and how the Voronoi diagram is extracted from this. Finally we discuss improving the efficiency of the implementation, shortcomings of the implementation and results.

1 Definitions

1.1 Triangulations of Point Sets

Most definitions will be given in d dimensions, even though the code will deal with only two and three dimensions. This is because the Boywer Watson algorithm works in higher than three dimensions, and so the Voronoi diagram can be extracted as the dual in higher than three dimensions. Furthermore, we avoid having to define terms in two and three dimensions separately.

Definition 1.1. The *convex hull* of a point set $A \subset \mathbb{R}^d$ is the smallest convex set that contains A, and is denoted H(A). A *convex set* in \mathbb{R}^d is a set of points such that given any pair of points in the set, the straight line segment joining the pair of points is fully contained in the set. See Figure 2.

Definition 1.2. Points $x_1, \ldots, x_n \in \mathbb{R}^d$ are affinely independent if any linear combination $\lambda_1 x_1 + \cdots + \lambda_n x_n = 0$ with $\lambda_1 + \cdots + \lambda_n = 0$ must have $\lambda_1 = \cdots = \lambda_n = 0$.

Definition 1.3. A k-simplex is the convex hull of k+1 affinely independent points in \mathbb{R}^d . These points are referred to as the *vertices* of the simplex.

From the definitions, \mathbb{R}^d can contain at most a d-simplex. When we create programs, we shall be dealing with \mathbb{R}^2 and \mathbb{R}^3 so the biggest simplex we shall see is a 3-simplex, namely a tetrahedron.

Definition 1.4. Let σ and τ be simplices in \mathbb{R}^d , with vertices A and B respectively. Then we say that τ is a *face* of σ if $B \subseteq A$. If τ is a k-simplex we say it is a k-face of σ .

Definition 1.5. A finite collection K of simplices in \mathbb{R}^d is said to be a *simplicial complex* if the following two conditions are satisfied:

- 1. If σ belongs to K then every face of σ belongs to K.
- 2. If σ and τ belong to K then either σ and τ are disjoint faces, or they intersect along a common face of σ and τ .

If the biggest simplex in K is a k-simplex, then K is said to be a simplicial k-complex.

Definition 1.6. We shall use a slightly modified definition from De Loera et Al [LRS10]. A triangulation of a point set $A \in \mathbb{R}^d$ is a simplicial d-complex K with vertices A such that the union of all d-simplices in K is H(A). See Figure 3.

Figure 2: Convex Hull of 8 points

Figure 3: Triangulation of 8 points

1.2 Convex Polytopes

The following definitions are from Matoušek [Mat02].

Definition 1.7. A hyperplane in \mathbb{R}^d is a set of the form $\{x \in \mathbb{R}^d : a \cdot x = b\}$ with $a \in \mathbb{R}^d$, $a \neq 0$ and $b \in \mathbb{R}$. A closed half-space in \mathbb{R}^d is a set of the form $\{x \in \mathbb{R}^d : a \cdot x \geq b\}$, with a and b as above. Note that $x \cdot y$ denotes the regular algebraic dot product, $x_1y_1 + x_2y_2 + \cdots + x_ny_n$ for $x, y \in \mathbb{R}^n$.

Remark. From the above definitions, it is clear that a hyperplane forms the boundary of a closed half-space. Thus a hyperplane in \mathbb{R}^d determines two closed half-spaces and the union of these half-spaces is \mathbb{R}^d .

Definition 1.8. A convex polytope P in \mathbb{R}^d is the intersection of finitely many closed half-spaces in \mathbb{R}^d . P is called an n-polytope if it has affine dimension n.

Definition 1.9. A face of a convex d-polytope P is defined as either

- 1. P itself.
- 2. $P \cap h \neq \emptyset$, where h is a hyperplane such that P is fully contained in one of the closed half-spaces determined by h.

A face will be a convex polytope. If a face of P is an n-polytope, then it is called an n-face of P. By definition P has faces of dimension $0, 1, \ldots, d$ where 0-faces are vertices.

As an example, a regular hexagon is a bounded convex 2-polytope (or simply a polygon) with

- One 2-face, the hexagon itself.
- Six 1-faces, the edges of the hexagon.
- Six 0-faces, the vertices of the hexagon.

1.3 Delaunay Triangulations

Some authors would take the following to be a theorem, for example [DO11], but we shall take it to be a definition:

Definition 1.10. A Delaunay triangulation DT(A) of a point set $A \subset \mathbb{R}^2$ is a triangulation of A such that no point of A lies inside the circumcircle of a triangle in DT(A). A triangle having no points in the interior of its circumcircle is often referred to as having the *empty circle property*.

We can generalise the above definition to a point set $A \subset \mathbb{R}^d$. But first we need the notion of a d-dimensional disc, or d-disc.

Definition 1.11. A d-dimensional open disc, or simply an $open\ d$ -disc, of radius r and centre c is the set of points

 $\{x \in \mathbb{R}^d : d(x,c) < r\}$ where d(x,c) is the Euclidean distance between x and c.

Remark. Since d-simplices consist of d+1 vertices, the vertices of a d-simplex σ define an open d-disc such that the boundary of the disc passes through all the vertices of σ . The boundary of this open d-disc is a (d-1)-hypersphere which circumscribes σ .

Definition 1.12. A Delaunay triangulation DT(A) of a point set $A \subset \mathbb{R}^d$ is a triangulation of A such that no point of A lies in an open d-disc whose boundary circumscribes a d-simplex in DT(A).

1.4 Voronoi Diagrams

We will use a slightly modified and generalised definition from Liebling and Pournin [LP12].

Definition 1.13. Consider a point set $A \subset \mathbb{R}^d$. The *Voronoi region* R_x associated with the point x in A is a possibly unbounded convex d-polytope which consists of those points in \mathbb{R}^d whose distance to x is not greater than their distance to any other point of A.

Definition 1.14. The *Voronoi diagram* V(A) induced by A is a decomposition of \mathbb{R}^d into the Voronoi regions associated with the points of A. V(A) will often be referred to as the Voronoi diagram of A.

Remark. Notice that a Delaunay triangulation of a point set A is not always unique, while the Voronoi diagram of a point set A is unique.

1.5 Describing Duality

A vertex in the Voronoi diagram or Delaunay triangulation will be called a Voronoi vertex or Delaunay vertex, respectively, and similarly for other geometrical structures. Given a point set $A \subset \mathbb{R}^d$ the duality between V(A) and DT(A) is the following. Each n-face of a Voronoi d-polytope (Voronoi region) corresponds to one and only one d-n face of a Delaunay d-simplex (Delaunay triangle). We will explicitly describe this duality in two and three dimensions.

In two dimensions, each Voronoi vertex corresponds to a Delaunay triangle, each Voronoi edge corresponds to a Delaunay edge, and each Voronoi polygon corresponds to a Delaunay vertex. An edge in V(A) is always a line segment or a ray of the perpendicular bisector of its corresponding Delaunay edge.

In three dimsensions there is an informative picture from [Led07] which demonstrates the situation well. Figure 4 shows, in order:

Figure 4: From [Led07], demonstrating the duality in 3D between V(A) and DT(A).

- (a) A Delaunay vertex p corresponds to a Voronoi Polyhedron (Voronoi region).
- (b) A Delaunay edge α corresponds to a Voronoi face.
- (c) A Delaunay face κ corresponds to a Voronoi edge.
- (d) A Delaunay tetrahedron τ corresponds to a Voronoi vertex.

2 Bowyer Watson Algorithm

There are many algorithms to compute the Voronoi diagram directly for a point set in 2D, and many algorithms which first compute the Delaunay triangulation and then the Voronoi diagram from this in 2D. However many of these algorithms do not generalise to higher dimensions. As such we will follow the algorithm presented independently by both Bowyer and Watson, which functions in n-dimensions [Wat81] [Bow81].

2.1 Algorithm Description

The Bowyer Watson algorithm gives an incremental method of producing the Delaunay triangulation of point sets $A \subset \mathbb{R}^n$. To quote [LS05], which compared five Delaunay tetrahedrilisation programs, "Each of the five programs compute the Delaunay tessellation incrementally, adding one point at a time". I believe incremental construction of Delaunay triangulations and tetrahedrilisations is commonplace because it is fast and easy to understand. We shall give a very basic implementation of the Boywer Watson algorithm in pseudo code, and later discuss how we develop a more sophisticated implementation. The pseudo code given here will be for the 2D case, but it generalises readily.

Remark. In the following sections we will call triangles 'bad', or 'good'. A triangle becomes bad if it no longer satisfies the empty circle property after a new point of A is added, and good otherwise.

```
_{
m 1} //Data: Input point set A, two empty sets of triangles Del and Bad and a polygon P
  //Result: Del will be a Delaunay triangulation of A
3 Triangle_set bowyer_watson(Point_set A) {
    Polygon P; Triangle_set Bad;
    create a super triangle which contains all points of A and add it to Del;
    for (each point x in A) {
      empty Bad; //Clear the set of bad triangles
      for (each triangle T in Del) { //Find the new bad triangles
        if (x lies inside the circumcircle of T) {
             add T to Bad and remove T from Del;
11
      for (each triangle T in Bad) { //Find the boundary of the bad triangles
13
        if (an edge of T is not shared by another triangle in Bad) {
14
15
          add that edge to P;
16
17
      for (each edge e of P) { //Retriangulate inside P
18
        form a new triangle by joining e to x and add this triangle to Del;
19
20
21
    Remove all triangles which share a vertex with the super triangle from Del;
22
    return Del;
23
24 }
```

Remark. To generalise this algorithm from two dimensions to n-dimensions, replace all instances of the word triangle with n-simplex, edge with n-1 face, the polygonal convex set P with an n-polytope and the circumcircle of a triangle with the (n-1)-hypersphere circumscribing an n-simplex. So in three dimensions we have triangles replaced by tetrahedrons, edges replaced by polygons, polygonal convex sets replaced by polyhedrons, and the circumcircle of a triangle replaced by the circumsphere of a tetrahedron.

In Figure 5 we present an example of the Bowyer Watson algorithm simulated on five points in \mathbb{R}^2 . At each step after (a), the new Delaunay edges are shown in blue. Notice that at each step, we add at most two triangles to the triangulation, which is a general result in two dimensions.

Removing all the triangles from the triangulation which share a vertex with the original 'super' triangle gives the Delaunay triangulation of the five points (Figure 6).

2.2 Degeneracies

Let $A \subset \mathbb{R}^2$. DT(A) does not exist if all points of A are collinear. If four or more points in A lie on the same circle, then DT(A) will not be unique. We shall not concern ourselves with the first case, and so we move on to notion of general position. In the second case, it will be a goal of ours to show that we still get the correct Voronoi Diagram no matter which Delaunay triangulation of A we choose.

Definition 2.1. Every author's definition of general position will change depending on their needs. In our case we say that a point set $A \subset \mathbb{R}^d$ is not in general position if two points in A are non-distinct, or if all points in A lie on a hyperplane in \mathbb{R}^d . That is, in 2D and 3D, collinear and coplanar point sets are respectively not in general postion.

Theorem 2.1. Given a point set $A \subset \mathbb{R}^d$, with |A| > d+1 lying on a (d-1)-hypersphere, a Delaunay triangulation of A is non-unique. However, each of these Delaunay triangulations produces the same Voronoi Diagram as their dual.

Figure 5: Every step of the Boywer Watson algorithm in our example, bar the last.

Figure 6: Delaunay triangulation of the five points.

Proof. Since every d-simplex in a Delaunay triangulation DT(A) shares the same circumcentre, we have no Voronoi edges between any simplices in DT(A). Thus every Voronoi edge is defined by the shared circumcentre of the d-simplices and all the d-1 faces of H(A). However, any choice of a Delaunay triangulation of A covers H(A) by definition. Thus each Delaunay triangulation produces the same Voronoi edges, and thus the same Voronoi diagram.

2.3 Correctness

We shall prove the correctness of the Bowyer Watson algorithm for a point set $A \subset \mathbb{R}^2$. The argument for higher dimensions is given by Watson in [Wat81], but it is nice to visualise the two dimensional case.

Definition 2.2. Two distinct triangles are called *neighbours* if they share an edge. A set of triangles C is said to be *strongly connected* if |C| = 1, or given any two distinct triangles $T_a, T_b \in C$ we can find a sequence $\sigma_1, \sigma_2, \ldots, \sigma_k$ of triangles in C with $T_a = \sigma_1, T_b = \sigma_k$ where σ_i and σ_{i+1} are neighbours for $i = 1, 2, \ldots, k-1$ and disconnected otherwise. A strongly connected set of triangles C is said to connect triangle T_a to triangle T_b if T_a and T_b are not in C, but both have neighbours in C.

Definition 2.3. A point x lies in the interior of a Delaunay triangulation of A if x lies inside H(A), the convex hull of A.

Definition 2.4. Consider a Delaunay triangulation of A, DT(A). The *Delaunay* cavity DC(x) of a point x is the set of bad triangles formed by inserting x into DT(A). See Figure 7.

Figure 7: The Delaunay cavity and the boundary of the cavity, for the last point in the example covered in Figure 5, subfigure 5f.

Lemma 2.2. Given DT(A), the Delaunay cavity DC(x) of a point x which lies in the interior of DT(A) is always strongly connected and non-empty.

Proof. Choose a triangle T in DT(A) such that x is contained inside T, or on the border of T. We are guaranteed that T exists because we insert x into the interior of DT(A). T is then a bad triangle, and so DC(x) is non-empty as required. Assume that there exists some triangle $B \in DC(x)$ that is not a neighbour of T and is impossible to connect to T using triangles from DC(x). Then any $C \subset DT(A)$ which connects B to T must contain a triangle $T'_C \notin DC(x)$. Then the circumcircle of B must contain a vertex belonging to at least one of these triangles T'_C that is not a vertex of B, otherwise it could not contain x. Thus we did not start with a Delaunay triangulation, a contradiction.

Definition 2.5. A set $S \subset \mathbb{R}^n$ is called *star-shaped* if there exists $p \in S$ such that the line segment px lies in S for all $x \in S$. The *kernel* of a star-shaped set S is the set $\{p \in S : px \subset S, \forall x \in S\}$.

Lemma 2.3. Given DT(A), the union of the triangles in the Delaunay cavity DC(x) of a point x which lies in the interior of DT(A) forms a star-shaped set with x in its kernel.

Most papers on the topic of vertex deletion from Delaunay triangulations state that the Delaunay cavity is star-shaped, but very few papers actually prove this. See [Buc+13] for example, which also gives different methods of re-triangulating the Delaunay cavity than the one presented in this paper. The result makes sense, but unfortunately we shall be no different and will not provide a proof. The idea is that there is at least one triangle T in DC(x) such that T is star-shaped with x in its kernel. Then any other triangle in DC(x) is fully reachable from $x \in T$ by line segments that pass through triangles in DC(x) which are connected to T so the union of triangles in DC(x) is star-shaped. This is as every triangle in DC(x) must contain x in its circumcircle and no other points of A. The basis of our proof of correctness of the Bowyer Watson algorithm comes from Watson [Wat81]:

Theorem 2.4. Given a correct Delaunay triangulation DT(A) for a set A of n-1 points, adding one point x to the interior of DT(A) and retriangulating as outlined in Bowyer Watson algorithm gives a correct Delaunay triangulation of the n points.

Proof. By the above lemma, the Delaunay cavity formed when adding x into DT(A) is strongly connected, non-empty and the union of the triangles in the cavity form a star-shaped set. As such we can find the polygonal boundary of DC(x). Only the edges that form this polygonal boundary will form the new triangles with x as any other triangle formed inside the boundary would overlap with a triangle formed by the edges on the boundary. Thus the retriangulation does form a triangulation of the n points, we must verify that it is still Delaunay.

By an argument of symmetry, if any of these new triangles were to contain a point of A in its circumcircle, then there would also be some triangle in DT(A) that has not been removed containing x in its circumcircle. This is impossible as we begin by removing all triangles from DT(A) which contain x in their circumcircle. Thus every triangle in the triangulation of the n points satisfies the empty circle property, and we thus obtain a Delaunay triangulation of the n points.

Theorem 2.5. The Bowyer Watson algorithm on a point set $A \subset \mathbb{R}^2$ produces a Delaunay triangulation of A.

Proof. Correctness of the Bowyer Watson algorithm on a point set A follows almost directly from Theorem 2.4. We begin the algorithm by creating a super triangle, which is certainly the Delaunay triangulation of 3 points - the vertices of the super triangle. Since the super triangle surrounds A, we will always insert new points into the interior of the current triangulation. Proceeding inductively, by Theorem 2.4, we will have a Delaunay triangulation after each point insertion. If A contains n points, then before we remove the super triangle from the triangulation, we will have the Delaunay triangulation of n + 3 points. It is easy to observe that the Delaunay triangulation of $A \cup B$ gives the Delaunay triangulation of A when all triangles with vertices in B are removed. Thus, removing the all triangles from the triangulation which share vertices with the super triangle leaves the Delaunay triangulation of A.

3 Voronoi Diagram Construction

3.1 Two Dimensions: Pseudocode

The following is basic pseudo code for constructing the Voronoi diagram given a Delaunay triangulation in two dimensions.

```
//Data: Delaunay triangulation of point set A - del, a set of Polygons - voro.
//Result: voro will be the Voronoi diagram induced by A.
Polygon_set voronoi(Triangle_set del) {
Polygon_set voro;
for(each triangle T in del) {
find the circumcentre of T, and store in T;
}
for(each point x in A) {
compute the voronoi region of x and store in voro;
}
return voro;
}
```

3.2 Obtaining a Voronoi Region

The method for computing the voronoi region of a particular point $x \in A$ is to start at a Delaunay triangle with x as a vertex - then move in a particular direction along a strongly connected set of Delaunay triangles that contain x and adding the Voronoi vertices encountered as vertices of the Voronoi region of x. One could think of this as 'turning' around the vertex, see Figure 8a. If the Voronoi region of x is bounded, we will return to the starting Delaunay triangle, and stop there. If the Voronoi region is unbounded, we will have to travel as far as we can in one direction from the starting triangle then stop and return to the starting triangle, proceeding to travel in the other direction. This will pick up two additional vertices, one for each Delaunay edge containing x that lies on H(A) which make the polygon unbounded. These additional vertices are points on the perpendicular bisector of an edge of H(A). A true Voronoi vertex will always be the circumcentre of a Delaunay triangle. See Figure 8b for two example Voronoi regions.

3.3 Unbounded Voronoi Edges

Consider constructing an unbounded Voronoi edge from a Delaunay edge e in a triangle T, which is labelled anti-clockwise, or positively oriented. Let the e be directed to agree with the orientation of T. There are three cases:

- 1. The circumcentre of T lies on the side of e so that e and the circumcentre of T form an anti-clockwise triangle. See Figure 9a.
- 2. The circumcentre of T lies on the side of e so that e and the circumcentre of T form a clockwise triangle. See 9a.
- 3. The circumcentre of T lies on e. See Figure 9b.

In the first case, the Voronoi edge will be a ray starting at the circumcentre of T going in the direction of the vector from the circumcentre of T to the midpoint of e. In the second case the Voronoi edge will again be a ray starting at the circumcentre of T but the direction of the ray is reversed from the first case. In the final case, the midpoint of e and the circumcentre of T are the same. Thus the perpendicular bisector of e must be calculated, and a ray drawn along the perpendicular bisector starting at the circumcentre of T and directed away from T itself.

Figure 9 demonstrates this construction, the unbounded Voronoi edges are shown in blue. In Figure 9a 1, 2 and 3 are the vertices are of a Delaunay triangle, 4 is the circumcentre of that triangle and 123 is an anti-clockwise triangle. For the edge 12, 124 forms a clockwise triangle, so the Voronoi edge corresponding to edge 12 is formed according to case 2. However, for the edges 23 and 31, 234 and 314 form anti-clockwise triangles so the Voronoi edges corresponding to 23 and 31 are formed according to case 1. In Figure 9b, the circumcentre of the triangle lies on an edge e of the triangle, so the Voronoi edge corresponding to e is formed according to case 3.

3.4 Three Dimension Specifics

The Voronoi diagram construction in three dimensions is very similar to two dimensions. We form a Voronoi polygon in three dimensions in a very similar manner to

(a) A Delaunay triangulation showing the paths (white and yellow arrows) taken to construct the Voronoi region of two Delaunay vertices. The stars indicate the starting triangles for those points.

(b) The Voronoi diagram corresponding to the above Delaunay triangulation. Notice the Voronoi regions for the two points above are constructed from Voronoi vertices encountered along the paths. The regions are marked by yellow and white ovals.

Figure 8: Demonstrating constructing a bounded and an unbouded Voronoi region

Figure 9: The different cases for constructing a Voronoi edge from a Delaunay edge.

how a Voronoi region was formed in two dimensions. Instead of turning about a Delaunay vertex in 2D we turn about a Delaunay edge in 3D, forming a Voronoi polygon in the same manner - picking up the Voronoi vertices corresponding to the tetrahedrons we meet, with two additional vertices for unbounded polygons. These polygons are, very importantly, guaranteed to be co-planar and convex as is pointed out in [Led07]. A Voronoi region in 3D for a point v is the polyhedron formed by all the Voronoi polygons corresponding to Delaunay edges which have v as a vertex. The following is short pseudocode to demonstrate this.

```
//Data: Delaunay tetrahedrilisation of point set A - del, a set of Polyhedrons -
  //Data: an Edge_set es and a Polygon p.
  //Result: voro will be the Voronoi diagram induced by A.
  Polyhedron_set voronoi(Tetrahedron_set Del) {
   Polyhedron_set voro; Edge_set es; Polygon p;
    for(each tetrahedron T in del) {
      find the circumcentre of T, and store in T;
    for(each point x in A) {
9
10
      find all edges in del which contain x and store in es;
      pick the Polyhedron in voro corresponding to x, call it ph;
11
      for(each edge e in es) {
13
        compute Voronoi polygon corresponding to e, storing in P;
        add P as a face of ph;
14
   return voro;
16
17 }
```

4 Important Formulae

4.1 Orientation Check

A triangle is positively oriented if walking along the boundary of the triangle in the direction of the orientation keeps the interior of the triangle on your left, and negatively oriented otherwise. A positively oriented triangle has a positive signed area in 2D, likewise a negatively oriented triangle has negative signed area. Orientation will be very important to us for two reasons:

- 1. Finding the orientation of the triangle with vertices ABC allows us to determine which side of the line AB that C lies on.
- 2. We will lift the vertices of a triangle to a parabaloid to check if a triangle satisfies the empty circle property. This test relies on the triangle being positively oriented.

We begin by computing the signed area of the triangle ABC up to a positive scale factor.

SignedArea
$$(A, B, C) = \begin{vmatrix} A_x & A_y & 1 \\ B_x & B_y & 1 \\ C_x & C_y & 1 \end{vmatrix}$$

And define our orientation test by:

$$\mbox{PositiveOriented}(A,B,C) = \begin{cases} 1, & \mbox{if SignedArea}(A,B,C) > 0 \\ 0, & \mbox{if SignedArea}(A,B,C) < 0 \\ -\infty, & \mbox{if SignedArea}(A,B,C) = 0 \end{cases}$$

Remark. In the third case of PositiveOriented's definition we do not have a triangle, but in fact have a line. Hence the value $-\infty$. If we ever try to create a triangle ABC and get a value of $-\infty$ for PostiveOriented(A,B,C), then the program will throw an error.

When dealing with a tetrahedron ABCD we instead compute the signed volume of the tetrahedron up to a positive scale factor.

SignedVolume
$$(A, B, C, D) = \begin{vmatrix} A_x & A_y & A_z & 1 \\ B_x & B_y & B_z & 1 \\ C_x & C_y & C_z & 1 \\ D_x & D_y & D_z & 1 \end{vmatrix}$$

Translating a tetrahedron does not change its signed volume, and so translation by -D reduces the above to:

$$\begin{vmatrix} A_x - D_x & A_y - D_y & A_z - D_z & 1 \\ B_x - D_x & B_y - D_y & B_z - D_z & 1 \\ C_x - D_x & C_y - D_y & C_z - D_z & 1 \\ 0 & 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} A_x - D_x & A_y - D_y & A_z - D_z \\ B_x - D_x & B_y - D_y & B_z - D_z \\ C_x - D_x & C_y - D_y & C_z - D_z \end{vmatrix}$$

The orientation test for a tetrahedron is the same as for a triangle with SignedArea(A, B, C) replaced by SignedVolume(A, B, C, D).

4.2 Empty Circle Check

We need to efficiently check if a point D lies inside the circumcircle of a triangle T. To do this, we will end up finding the signed volume of a parallelepiped. The main result is from Guibas and Stolfi [GS85] (see pg. 107), Figure 10 is extracted from this. The idea is to lift D and the vertices of T to the parabaloid of revolution by the following map, and perform an orientation test on the tetrahedron defined by the four points.

$$\mathbb{R}^2 \to \mathbb{R}^3$$
$$(a,b) \mapsto (a,b,a^2+b^2)$$

Lemma 4.1. The point D lies inside of the circumcircle of a positively oriented triangle ABC if and only if

$$\mathscr{D}(A,B,C,D) = \begin{vmatrix} A_x & A_y & A_x^2 + A_y^2 & 1 \\ B_x & B_y & B_x^2 + B_y^2 & 1 \\ C_x & C_y & C_x^2 + C_y^2 & 1 \\ D_x & D_y & D_x^2 + D_y^2 & 1 \end{vmatrix} > 0$$

We will not transcribe the proof of the above lemma here, but a picture (Figure 10) from [GS85] gives some intuition. We define a plane P in three dimensions using the vertices of the triangle lifted onto the parabaloid of revolution. Another point x is co-circular with the vertices of the triangle in 2D if and only if it is co-planar with P when lifted onto the parabaloid of revolution. If x is not co-planar, then the side of the plane x lies on determines if x lies inside the circle.

Translating a triangle ABC and a point D in the plane will not change the orientation of ABC or the sign of $\mathcal{D}(A, B, C, D)$, and so we can reduce our test to

Fig. 18. The quadratic map for computing InCircle.

Figure 10: Figure of the lifting from Guibas and Stolfi [GS85].

a 3×3 determinant. We translate by -D, to obtain that the point D lies inside of the circumcircle of a positively oriented triangle ABC if and only if

$$\begin{vmatrix} A_x - D_x & A_y - D_y & (A_x - D_x)^2 + (A_y - D_y)^2 & 1 \\ B_x - D_x & B_y - D_y & (B_x - D_x)^2 + (B_y - D_y)^2 & 1 \\ C_x - D_x & C_y - D_y & (C_x - D_x)^2 + (C_y - D_y)^2 & 1 \\ 0 & 0 & 0 & 1 \end{vmatrix} > 0$$

Which is, expanding on the last row

$$\begin{vmatrix} A_x - D_x & A_y - D_y & (A_x - D_x)^2 + (A_y - D_y)^2 \\ B_x - D_x & B_y - D_y & (B_x - D_x)^2 + (B_y - D_y)^2 \\ C_x - D_x & C_y - D_y & (C_x - D_x)^2 + (C_y - D_y)^2 \end{vmatrix} > 0$$

So we end up checking if the signed volume of the parallelepiped defined by the three 3D vectors that are the rows of the above matrix is postive. The above generalises to three dimensions by mapping (a, b, c) to $(a, b, c, a^2 + b^2 + c^2)$.

Lemma 4.2. The point E lies inside the circumcircle of a positively oriented tetrahedron ABCD if and only if

$$\begin{vmatrix} A_x - E_x & A_y - E_y & A_z - E_z & (A_x - E_x)^2 + (A_y - E_y)^2 + (A_z - E_z)^2 \\ B_x - E_x & B_y - E_y & B_z - E_z & (B_x - E_x)^2 + (B_y - E_y)^2 + (B_z - E_z)^2 \\ C_x - E_x & C_y - E_y & C_z - E_z & (C_x - E_x)^2 + (C_y - E_y)^2 + (C_z - E_z)^2 \\ D_x - E_x & D_y - E_y & D_z - E_z & (D_x - E_x)^2 + (D_y - E_y)^2 + (D_z - E_z)^2 \end{vmatrix} > 0$$

4.3 Circumcentre Calculation

Finding the circumcentre of a triangle sitting in \mathbb{R}^2 is relatively easy. One can hardcode finding the intersection of the perpendicular bisectors of two sides of the

triangle, giving the circumcentre. However for a triangle sitting in \mathbb{R}^3 , or a tetrahedron, some more sophistication is needed. The following are from Shewchuk [She13]:

Let |A| denote the Euclidean norm of the vector A. Let $A \times B$ denote the cross product of A and B. The circumcentre of the circumcircle of a triangle ABC in \mathbb{R}^3 is coplanar with the triangle and is given by:

$$C + \frac{[|A - C|^2(B - C) - |B - C|^2(A - C)] \times [(A - C) \times (B - C)]}{2|(A - C) \times (B - C)|^2}$$

The circumcentre of the circumsphere of a tetrahedron ABCD in \mathbb{R}^3 is given by:

$$D + \frac{|A-D|^2(B-D)\times(C-D) + |B-D|^2(C-D)\times(A-D) + |C-D|^2(A-D)\times(B-D)}{2\mathrm{SignedVolume}(A,B,C,D)}$$

Where

SignedVolume
$$(A, B, C, D) = \begin{vmatrix} A_x - D_x & A_y - D_y & A_z - D_z \\ B_x - D_x & B_y - D_y & B_z - D_z \\ C_x - D_x & C_y - D_y & C_z - D_z \end{vmatrix}$$

5 Data Structures and Efficiency

5.1 Data Structures

Some main data structures used in the program will be outlined here as an aid. Edges, Faces, Triangles and Tetrahedron structures will have vertices as integer labels rather than actual real number co-ordinates as it is easier to compare two integers than multiple doubles and retrieval is also easier. The integer labels can pull from an array of doubles when co-ordinates are necessary. We consider a triangle to have the following data structure.

```
typedef struct Edge {
  int from, to; //2 vertices as integer labels
} Edge;

typedef struct Triangle {
  int vert_1, vert_2, vert_3; //Three vertices of triangle as integer labels
  Edge edge_1, edge_2, edge_3; //Three edges of the triangle
  //adjacent[i] is pointer to the triangle sharing edge_i+1 - NULL if none exist
  struct Triangle* adjacent[3];
  double circum[2]; //Circumcentre of the triangle
  int checked; //Has the triangle been checked in step j of Bowyer Watson?
} Triangle;
```

We use a doubly linked list (DLL) to hold pointers to the triangles in Del, and our bad triangles. Insertion and deletion are quite fast, and being able to search in both directions is very powerful when Hilbert sorting is introduced.

```
typedef struct DLL_NODE {
   Triangle *data;
   struct DLL_NODE *next, *prev;
} DLL_NODE;

struct DLL{
   DLL_NODE *first, *last;
};
```

We use an edge stack to form our polygon of edges on the boundary of the Delaunay cavity. While a triangle pointer stack keeps track of the good triangles that sit on the border of the Delaunay cavity. A stack is used for these because an edge on the boundary only needs to be seen once and is then thrown away.

```
//Edge stack
typedef struct Stack{
   int top_index;
   int capacity;
   Edge *item;
} Stack;
//Triangle pointer stack
typedef struct Triangle_Stack{
   int top_index;
   int capacity;
   Triangle **item;
} Triangle_Stack;
```

We give a Voronoi region in 2D the following data structure. The Voronoi Diagram will be an array of pointers to Voronoi regions, or Polygons.

```
struct Polygon2D { //An array of vertices, and a boolean unbounded
double* v;
int capacity;
int num_items;
int unbounded;
};
```

Much is similar in the three dimensional case, with a DLL still holding the Delaunay tetrahedrilisation, and a polygon stack and tetrahedron pointer stack holding the boundary of the Delaunay cavity and the tetrahedrons on that boundary respectively. However the Voronoi region structure is different, and we need a tetrahedron data structure, not a triangle data structure. Let us start with the tetrahedron data structure. To quote [LS05], which compared five Delaunay tetrahedrilisation programs, "All five programs store the set of tetrahedra, and for each tetrahedron t, references to its vertices and neighbors—a neighbor is another tetrahedron that shares a common triangle with t", and we are no different.

```
1 typedef struct Edge { //Edges have integer labelled vertices
    int v[2]; //2 vertices as integer labels
3 } Edge;
5 typedef struct Face { //Faces are triangles - integer labelled vertices
    int v[3]; //3 vertices as integer labels
7 } Face;
9 typedef struct Tetrahedron {
   int v[4]; //Four vertices of tetrahedron as integer labels.
   Face f[4]; //Four faces of tetrahedron
11
12
    //adj[i] is pointer to the Tetrahedron sharing face[i] - NULL if none exist.
   struct Tetrahedron* adj[4];
13
  double circum[3]; //The co-ordinates of the circumcentre
int checked; //Has the tetrahedron has been checked in step j of bowyer_watson
16 } Tetrahedron;
```

A Voronoi region in 3D will be a polyhedron. Again, the Voronoi diagram will be an array of pointers to Voronoi regions, in this case Polyhedron structures.

```
typedef struct Polygon3D {//Holds the Polygon's vertices in an array.

double* v;
int capacity;
int num_items;
} Polygon3D;

struct Polyhedron {//An array of Polygon3D pointers, and a boolean unbounded Polygon3D **faces;
int num_faces;
int unbounded;
};
```

5.2 Keeping Track of Adjacencies

The basic Bowyer Watson implementation works, but it is rather slow. The first problem we have is that for each point in A we loop over every triangle in Del. Using the fact that Delaunay cavities must be strongly connected (see Lemma 2.2) we see that looping over every triangle in Del to find all bad triangles is unnecessary. We can instead find just one element of the cavity, and then recursively check the neighbours of this triangle to find the entire cavity.

The following keeps track of triangle adjacencies on the fly, the first two operations are performed at each step of the Boywer Watson, with the last performed only when removing the super triangle.

- 1. Keep track of which good triangles sit on the border of the Delaunay cavity, call them the border triangles. Then, when a new triangle T is formed with an edge e the border triangle BT sharing e (if it exists) points to T, and T points back to BT.
- 2. When all the new triangles have been added to retriangulate the cavity, we fill in the adjacencies between these new triangles.
- 3. On removal of all triangles which share vertices with the super triangle, the triangles which were adjacent to removed triangles must have this adjacency set to NULL.

5.3 Hilbert Curve

From the previous section we see that it is imperative that we quickly locate one bad triangle, as the other bad triangles spread out as neighbours from the first one. This brings us on to the notion of point location. If we can sort the input points such that the points are entered into the Bowyer Watson algorithm with the point entered at step n geometrically close to the point entered at step n+1 this will have two benefits. Firstly, we will likely locate a bad triangle quickly since the newly added point will probably be in the circumcenter of a recently added triangle to the Delaunay triangulation. Secondly, these recently added triangles in question can be cached and accessed faster. I was reading lecture notes from Remacle and Legat at Université catholique de Louvain [RL15] when I encountered the idea of sorting the input points along a Hilbert curve.

Space filling curves are commonly used to reduce a multi-dimensional problem to a one dimensional problem, producing a mapping from a hypercube to an interval. A curve is a linear traversal of a discrete multi-dimensional space. A Hilbert curve is a continuous, space-filling curve - that is a curve with no breaks or jumps whose range fills a hypercube. The Hilbert curve can be thought of as the limit of a sequence of curves $(H_n)_{n=1}^{\infty}$, where n denotes the order of the curve. To get next curve in the sequence we take the curve of order n-1 and make four copies of it. We then rotate and place these copies so that one copy sits in each quadrant of a square, with the bottom left quadrant's curve starting at (0,0) and the bottom right quadrant's curve finishing at $(n^2-1,0)$. We join up these curves in the order: bottom left, top left, top right, bottom right to form the curve of order n. The curves of order 1 and 2 are depicted in Figures 11 and 12 in two dimensions, with H_1 being the first curve in the sequence $(H_n)_{n=1}^{\infty}$.

Each of the curves H_n is simple, meaning H_n does not cross itself. However the Hilbert curve, the limit of the sequence of curves $(H_n)_{n=1}^{\infty}$, is not simple. If it were simple, then there would be a continuous bijection from the unit interval to the unit square. The unit interval is a compact space by the Heine-Borel theorem since it is closed and bounded. The unit square is a Hausdorff space since it is a subset of the Hausdorff space \mathbb{R}^2 . So this bijection would in fact be a homeomorphism, as we will show. However, the unit interval can't be homeomorphic to the unit square as the unit interval can be made disconnected by removing an interior point from the unit interval, but the unit square can not be made disconnected by removing a single point from it.

Theorem 5.1. A continuous bijection from a compact space C to a Hausdorff space H is a homeomorphism.

Proof. Let f be a continuous bijection from C to H. Let $V \subset C$ be closed in C. Then V is compact since V is a closed subset of a compact space. Thus f(V) is compact since the image of a compact space under a continuous map is compact. Finally f(V) is closed in H since a compact subset of a Hausdorff space is in fact closed. But $f(V) = (f^{-1})^{-1}(V)$, that is, the image of V under f is the preimage of V under the inverse of f. Thus if V is closed in C, $(f^{-1})^{-1}(V)$ is closed in H, so f^{-1} is continuous. So f is a homeomorphism.

Figure 11: Order 1 curve

Figure 12: Order 2 curve

We choose the Hilbert curve in particular because it has very nice properties, such as being space-filling as was already mentioned. Most importantly, two points that are close along a Hilbert curve in two dimensions are guaranteed to be close together in the plane. Namely we are interested in encoding each point in $A \subset \mathbb{R}^2$ to a one dimensional distance, and sorting A in increasing order of these distances. There are many good algorithms for encoding and decoding Hilbert curves, with eight presented in [Liu+16] alone. We implement the two dimensional Hilbert Curve encoding algorithm from [CWS07].

```
//rotate/flip a quadrant appropriately.
void rot(int quad, int *x, int *y, int w) {
   int temp;
   if (quad == 0) {
      temp = *x;
      *x = *y;
      *y = temp;
   }
}
```

```
9 else if (quad == 1) {
10
      *y = *y - w;
11
    else if (quad == 2) {
12
     *x = *x - w;
*y = *y - w;
13
14
15
    else {
16
17
      temp = *x;
       *x = w - *y - 1;
18
      *y = w * 2 - temp - 1;
19
20
21 }
22
^{23} //Converts a 2D integer point (x,y) to a 1D distance d, with grid resolution n
24 //d will be called the Hilbert distance
25 int xy2d (int n, int x, int y) {
    int max:
27
    int w;
    int temp;
29
30
    int quad;
    int rx, ry, d = 0;
    if (x >= y) max = x;
32
33
    else max = y;
    r = floor(log(max)/log(2)) + 1;
    w = (int)pow(2, r - 1);
35
    if ((n % 2) != (r % 2)) {
36
     temp = x;
37
38
      x = y;
      y = temp;
39
40
    while (r != 0) {
41
      rx = (x \& w) > 0;
      ry = (y & w) > 0;
quad = (3 * rx) ^ ry;
43
      d += w * w * quad;
45
      rot(quad, &x, &y, w);
46
     r = r - 1;
47
      w = w/2;
48
49
    return d:
51 }
```

To explain this, n is the maximum order curve we will consider and r is the minimum order curve such that (x,y) sits on the curve. Initially, if the parity of n and r differ we swap x and y. Then using bitwise operations, we find which quadrant of the square (0,0), $(0,r^2-1)$, (r^2-1,r^2-1) , $(r^2-1,0)$ that (x,y) sits in. Based on this quadrant, the encoded value d of (x,y) is updated, and (x,y) is updated in the function rot to account for the rotation of the curves in each different quadrant. Quadrant 0 is the bottom left, quadrant 1 is the top left, quadrant 2 is the top right, quadrant 3 is the bottom right. Then r is decremented because we need to check a curve one order lower than we had in the last step. We iteratively repeat this procedure until r is 0.

To Hilbert sort our points in $A \subset \mathbb{R}^2$ we can make a copy of A and perform a translation on all the points (x,y) so that $x \geq 0$ and $y \geq 0$, then convert these to integers by forming an integer point (a,b) with, say the first five significant figures of x and y respectively. Sorting these integer points in ascending ordering of their Hilbert distance, will thus sort A. This will not be an exact sorting of A due to an inaccurate integer conversion, but that is acceptable as two adjacent points in A after sorting will still be close geometrically, which is the end goal. See Figure 13 for an example of this sorting, the white line shows the path taken to traverse the points of A after sorting.

Figure 13: 10,000 points in 2D sorted along a Hilbert curve

5.4 Time savings

To demonstrate the magnitude of the time savings, here is an example on 20,000 points in \mathbb{R}^2 . The following experiments were performed on my home computer with an Intel Core i5-6500 CPU and 8GB of RAM. Without performing the first optimisation, that is finding one bad triangle and finding the other bad triangles as neighbours of it, the program took 51.4 seconds. Performing the first optimisation, improved this to 17.4 seconds. Performing a Hilbert sort on the 20,000 points before using the optimised Bowyer Watson algorithm vastly improved the program run time to 0.6 seconds altogether for the sorting, Delaunay triangulation and Voronoi diagram computation.

This allows the program to run on very large data sets very fast. There is one problem, the program does not use exact arithmetic, and so it often makes critical errors on data sets with more than about 100,000 points - this is generally due to a triangle approximating a line. In Figure 14 there is a zoomed in section of a Voronoi diagram of 100,000 points. The full Voronoi diagram of the points took 3.1 seconds to compute.

Figure 14: A section cut out a Voronoi diagram of 100,000 points in 2D

6 Results and Applications

6.1 Results in Two Dimensions

An example of the program output on ten points in two dimensions follows:

Figure 15: 10 input points in 2D

Figure 16: The Delaunay triangulation of the 10 points

Figure 17: The Voronoi diagram of the 10 points

Figure 18: The Voronoi diagram of the points in white, with the Delaunay in blue

An example of the program output on 100 points in two dimensions follows:

Figure 19: 100 input points in 2D

Figure 20: The Delaunay triangulation of the 100 points

Figure 21: The Voronoi diagram of the 100 points

Figure 22: The Voronoi diagram of the points in white, with the Delaunay in blue.

6.2 Results in Three Dimensions

An example of the program output on nine points consiting of the eight vertices of the unit cube, and the centre of the unit cube which is the origin in \mathbb{R}^3 follows.

Figure 23: The Delaunay tetrahedrilisation of the nine points, containing 12 tetrahedrons - two for each face of the cube.

Figure 24: The bounded region shown in Figure 24b corresponds to the centre of the cube.

(b) Bounded Voronoi regions of these points

Figure 26: The Delaunay tetrahedrilisation of 1000 points

6.3 Applications

We briefly discuss some applications of Voronoi Diagrams:

- 1. Texture generation: The Voronoi Diagram induced by point sets can be used to produce natural textures in computer graphics such as lava like textures, or cobblestone flooring.
- 2. Natural growth models: Voronoi diagrams can be considered as arising from the following process. A set of points each begin growing a crystal. The crystals move outwards from the points at the same rate. Crystals stop growing in a particular direction if they are touching another crystal in that direction. This will result in each crystal being a Voronoi region. See [LP12], Section 3 for examples in biology modelled with Voronoi diagrams.
- 3. Geostatistics: For example, say you took measurements of the amount of gold at one hundred exploratory drill points in a region of mountains. Forming the Voronoi diagram associated with these one hundred points would give a method of estimating the area in these mountains with the highest concentration of gold deposits.

7 Problems and Conclusion

7.1 Implementation Flaws

We do not use exact arithmetic in our implementation, because it is slow. However for a robust implementation exact arithmetic would be a necessity. Not using it causes two main problems:

- 1. We assume that input points are distinct, but we do not check this assumption is valid. Even if we did check this, without exact arithmetic we would have to say two points that are within a certain tolerance are non-distinct.
- 2. The program can currently fail to correctly compute an orientation. In two dimensions this primarily occurs when a triangle is very thin or when a tetrahedron on the parabaloid of revolution is very thin. As a result the program can incorrectly determine if a point lies inside the circumcircle of a triangle, or draw a voronoi edge in the wrong direction. There is an informative discussion of this problem in [RL15] (see pg. 26).

Currently we do not sort the points along a Hilbert curve in three dimensions. This is because I found visually presenting the three dimensional Voronoi diagram to be difficult, and from what I found, so do most. The program already runs fast enough without sorting for any input point set I can reasonably visualise. However, if I improved the visualisation it would definitely be worth sorting the points.

On the topic of sorting, it is suggested in the literature to avoid completely sorting the input points but instead to sort randomised bins of points. This is an effort to combine the benefits of randomised point insertion, and inserting points in an order so that they are close together. See [ACR03] for more information on this.

7.2 Problems Encountered

This section is a bit different from what would be regularly seen in articles and perhaps somewhat informal, but I would like to outline some things I found particularly hard to work with in this project and how that effected the project.

- 1. It is hard to pick good data structures, yet very important to do so. As an example, when I first wrote the program in two dimensions the triangle data structure did not store which triangles were adjacent to it. This turned out to be very inconvenient later when efficiency was considered, and took much time to fix. Furthermore, the Delaunay triangulation was originally stored in a bag, and this had to be changed to a doubly linked list when ordering became important.
- 2. Getting the Voronoi diagram from the Delaunay triangulation was actually harder than I expected it to be. It is very easy to determine the Voronoi edge between neighbouring triangles, but I originally found it quite awkward when a Delaunay triangle had an edge with no neighbour. The problem was figuring out which side of an edge the circumcentre of the triangle lay on. Fortunately, performing an orientation check on the triangle formed by the edge and the circumcentre easily solves this.

3. Learning OpenGL was somewhat problematic. I am very grateful to my supervisor for his C code for drawing three dimensional convex hulls with OpenGL, but there are still some flaws in my visualisation. For example, in three dimensions, where two tetrahedrons or Voronoi regions intersect, the colours of the region merge on the face they intersect on, which is not ideal. There are some clever ways of getting a face to be different colours on different sides of the face, but I did not get it quite right.

7.3 Conclusion

We have discussed in detail how to compute the Delaunay triangulation and the Voronoi diagram of a point set in \mathbb{R}^2 and shown how this adapts to \mathbb{R}^3 . We have shown how to improve the efficiency of the Bowyer Watson algorithm using the fact that the triangles in a Delaunay cavity are strongly connected, and using Hilbert sorting to order the input points. Finally we have presented results, and applications of the work. Full C source code is provided in the appendix for the three dimensional case, with code snippets for the two dimensional. At my website, www.maths.tcd.ie/~martins7 I will host a project folder as long as I have access to the URL, and full two dimensional source code can be found there.

To conclude, computational geometry is not easy, but it is as rewarding as it is challenging. I would like to quote the Wikipidea page on Computational Geometry here, "Some [geometry] problems seem so simple that they were not regarded as problems at all until the advent of computers". That is to say, some geometry problems seem awfully simple until you try to get a computer, which lacks our powerful visual processing, to solve them.

Bibliography

- [Des44] R. Descartes. *Principia philosophiae*. Ludovicum Elzevirium, 1644.
- [Bow81] A. Bowyer. "Computing Dirichlet tessellations". In: *The Computer Journal* 24.2 (1981), pp. 162–166.
- [Wat81] D. F. Watson. "Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes". In: *The Computer Journal* 24.2 (1981), pp. 167–172.
- [GS85] Leonidas Guibas and Jorge Stolfi. "Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams". In: *ACM Transactions on Graphics* 4.2 (1985), pp. 74–123.
- [Far95] Andrew Farrell. Fortune's Voronoi Diagram Algorithm Exteded to Convex Sites. Trinity College, 1995.
- [AK00] Franz Aurenhammer and Rolf Klein. "Voronoi Diagrams". In: *Handbook of Computational Geometry* 5 (2000), pp. 201–290.
- [Mat02] Jiří Matoušek. Lectures on discrete geometry. Vol. 212. Springer Science & Business Media, 2002.
- [ACR03] Nina Amenta, Sunghee Choi, and Günter Rote. "Incremental constructions con BRIO". In: Proceedings of the nineteenth annual symposium on Computational geometry. ACM. 2003, pp. 211–219.

- [LS05] Yuanxin Liu and Jack Snoeyink. "A Comparison of Five Implementations of 3D Delaunay Tesselation". In: Combinational and Computational Geometry 52 (2005), pp. 439–458.
- [CWS07] Ningtao Chen, Nengchao Wang, and Baochang Shi. "A new algorithm for encoding and decoding the Hilbert order". In: *Software: Practice and Experience* 37.8 (2007), pp. 897–908.
- [HÓDY07] Paul Harrington, Colm Ó Dúnlaing, and Chee K Yap. "Optimal Voronoi diagram construction with n convex sites in three dimensions". In: *International Journal of Computational Geometry & Applications* 17.06 (2007), pp. 555–593.
- [Led07] Hugo Ledoux. "Computing the 3d Voronoi diagram robustly: An easy explanation". In: Voronoi Diagrams in Science and Engineering, 2007. ISVD'07. 4th International Symposium on. IEEE. 2007, pp. 117–129.
- [LRS10] Jesús A. De Loera, Jörg Rambau, and Francisco Santos. *Triangulations Structures for Algorithms and Applications*. Springer, 2010.
- [DO11] Satyan L. Devadoss and Joseph O'Rourke. Discrete and Computational Geometry. Princeton University Press, 2011.
- [LP12] Thomas M. Liebling and Lionel Pournin. "Voronoi Diagrams and Delaunay Triangulations: Ubiquitois Siamese Twins". In: *Documenta Mathematica* (2012), pp. 419–431.
- [Buc+13] Kevin Buchin et al. "Vertex deletion for 3D Delaunay triangulations". In: European Symposium on Algorithms. Springer. 2013, pp. 253–264.
- [She13] Jonathan R. Shewchuk. Lecture notes on Geometric Robustness. https://people.eecs.berkeley.edu/~jrs/meshpapers/robnotes.pdf. [Online; accessed 06-March-2017]. 2013.
- [RL15] Jean-Francois Remacle and Vincent Legat. Construction of 2D Delaunay Triangulations. http://perso.uclouvain.be/jean-francois.remacle/LMECA2170/Chap2.pdf. [Online; accessed 16-January-2017]. 2015.
- [Liu+16] Hui Liu et al. "Encoding and Decoding Algorithms for Arbitrary Dimensional Hilbert Order". In: arXiv preprint arXiv:1601.01274 (2016).

Appendix: Code

Short Header File

```
#ifndef HEADER_FILE
#define HEADER_FILE

typedef struct DLL DLL;
typedef struct Polyhedron;
typedef struct Polyhedron Polyhedron;
typedef struct Polygon_2D Polygon_2D;

#endif
```

Three Dimensional Code

```
1 //Windows compile gcc 3D_Voronoi.c -o 3D_Voronoi glut32.lib -lopengl32 -lglu32
  2 //Unix compile gcc 3D_Voronoi.c -o 3D_Voronoi -lglut -lGL -lGLU -lm
3 //Sean Martin TCD with Colm 0 Dunlaing- 18/03/2017
  4 //Contact info: martins7@tcd.ie or seankieran.m@hotmail.com
  6 #ifdef _WIN32
7 #define _CRT_SECURE_NO_DEPRECATE
8 #include <windows.h>
  9 #endif
10 #include <time.h>
12 #include <stdio.h>
13 #include <GL/gl.h>
14 #include <GL/glu.h>
15 #ifdef _WIN32
 16  #include <C:\Users\Sean\Google Drive\College Mathematics\SS\Voronoi Diagrams\glut.h> 17  #else
16
18 #include <GL/glut.h>
19 #include <unistd.h>
20 #endif
21 #include <stdlib.h>
22 #include <math.h>
23 #include <string.h>
24 #include <float.h>
25 #include "Voronoi.h"
     //Global variables
7/Global variables
28 double *p; //p for points - our array of points
29 double *color; //holds the colors of the Delaunay tetrahedron
30 int state = 0; //A kbd function use
31 int tumble_on = 0; //A kbd function use
32 int num_points; //will hold the number of points in consideration
33 static int debug = 0; //on/off - debugging/ not debugging
34 int p_on = 0, d_on = 0, v_on = 0, cull_on = 0; //brawing states
35 double tumble = 0, r_x = 0, r_y = 0, zoom = 1; //for animation
36 double bmin[3], bmax[3]; //for clipping
37 DLL *del: //Stores Delaunay tetrahedron
37 DLL *del; //Stores Delaunay tetrahedron
38 Polyhedron **voro; //Stores Voronoi Diagram
 40 typedef struct Polygon_3D {//Holds the Polygons vertices in an array.
        int capacity;
int num_items;
 44 } Polygon_3D;
 46 struct Polyhedron {//An array of Polygon_3D pointers, and a boolean unbounded
       Polygon_3D **faces;
int num_faces;
49  int unbounded;
50 };
51
     53
55
        exit(-1);
57
        59
61
        exit(-1);
63
65
        pg->num_items = 0;
    return pg;
}
66
      //makes a polyhedron with n faces;
70 Polyhedron *make_polyhedron(int n) {
        Int 1;
Polyhedron *ph = malloc(sizeof(Polyhedron));
ph->num_faces = n;
if (ph == NULL) {
   fprintf(stderr, "ERROR: malloc failed\n");
            exit(-1);
         ph->faces = malloc(sizeof(Polygon_3D*) * ph->num_faces);
     if (ph->faces == NULL) {
```

```
80 fprintf(stderr, "ERROR: malloc failed\n");
  81
                exit(-1):
           for ( i = 0; i < ph->num_faces; ++i) {
   ph->faces[i] = make_polygon(30);
}
  82
  83
  84
  85
  86
87
            ph->unbounded = 0;
            return ph;
  88 }
  89
       //adds the point a to the polygon pg
void add_to_polygon(double *a, Polygon_3D *pg) {
  if((pg->num_items + 3) > pg->capacity) {
    pg->capacity *= 2;
    pg->v = realloc(pg->v, sizeof(double) * pg->capacity);
}
  90
  94
     pg->v[pg->num_items++] = a[0];
pg->v[pg->num_items++] = a[1];
pg->v[pg->num_items++] = a[2];
  96
  98
100
100 //pn pulls co-ordinate n from the point labelled by integer input.
102 double p0(int input) {
103    return p[3 * input];
104 }
105 double p1(int input) {
106    return p[3 * input + 1];
107 }
108 double p2(int input) {
109    return p[3 * input + 2];
110 }
113 double determinant of 2x2 matrix with rows [a1, a2], [b1, b2] 113 double determinant_2(double a1, double a2, double b1, double b2) { 114 return (a1 * b2) - (a2 * b1); 115 }
112 //Calculates determinant of 2x2 matrix with rows [a1, a2], [b1, b2]
116
110 //Calculates the determinant of the 3x3 matrix with rows a,b,c
118 double determinant_3(double *a, double *b, double *c) {
119     return a[0] * (b[1] * c[2] - b[2] * c[1]) +
120     a[1] * (b[2] * c[0] - b[0] * c[2]) +
121     a[2] * (b[0] * c[1] - b[1] * c[0]);
122 }
123
result += a[0] * determinant_3(f, g, h
f[0] = b[0]; f[1] = b[2]; f[2] = b[3];
g[0] = c[0]; g[1] = c[2]; g[2] = c[3];
h[0] = d[0]; h[1] = d[2]; h[2] = d[3];
131
133
           result -= a[1] * determinant_3(f, g, h);
f[0] = b[0]; f[1] = b[1]; f[2] = b[3];
g[0] = c[0]; g[1] = c[1]; g[2] = c[3];
h[0] = d[0]; h[1] = d[1]; h[2] = d[3];
135
137
           result += a[2] * determinant_3(f, g, h);
f[0] = b[0]; f[1] = b[1]; f[2] = b[2];
g[0] = c[0]; g[1] = c[1]; g[2] = c[2];
h[0] = d[0]; h[1] = d[1]; h[2] = d[2];
result -= a[3] * determinant_3(f, g, h);
139
141
142
143
            return result;
145 }
146
147
148 These data structures have vertices as integer labels, which will pull
149 from an array of points when actual co-ordinates are needed.
151 typedef struct Edge { //Edges have integer labelled vertices
152 int v
153 } Edge;
              int v[2]; //2 vertices as integer labels
154
155 typedef struct Face { //Faces are triangles - integer labelled vertices
156
             int v[3]; //3 vertices as integer labels
158
159 typedef struct Tetrahedron {
         int v[4]; //Four vertices of tetrahedron as integer labels.

Face f[4]; //Four faces of tetrahedron
160
           Face f[4]; //Four faces of tetrahedron //adj[i] is pointer to the Tetrahedron sharing face[i] - NULL if none exist. struct Tetrahedron* adj[4]; double circum[3]; //The co-ordinates of the circumcentre int checked; //Has the tetrahedron has been checked in step j of bowyer_watson
162
164
166 } Tetrahedron;
168 //Calculates the orientation determinant of the Tetrahedron
169 //It is reduced to a 3x3 calculation through translation by -t->v[3]
170 double tetrahedron_determinant(Tetrahedron *t) {
170 double tetrahedron_determinant(Tetr
171 double a[3], b[3], c[3];
172 a[0] = p0(t->v[0]) - p0(t->v[3]);
173 a[1] = p1(t->v[0]) - p1(t->v[3]);
174 a[2] = p2(t->v[0]) - p2(t->v[3]);
175 b[0] = p0(t->v[1]) - p0(t->v[3]);
176 b[1] = p1(t->v[1]) - p1(t->v[3]);
177 b[2] = p2(t->v[1]) - p2(t->v[3]);
178 c[0] = p0(t->v[2]) - p0(t->v[3]);
```

```
182 }
184 //makes a positively oriented Tetrahedron with vertices v0, v1, v2, v3.
     //makes a positively oriented Tetrahedron with vertices v0, v1,
Tetrahedron *make_tetrahedron(int v0, int v1, int v2, int v3) {
   Tetrahedron *t = malloc(sizeof(Tetrahedron));
   if (t == NULL) {
      fprintf(stderr, "ERROR: malloc failed\n");
      reject(1);
187
        exit(-1);
}
189
        t->v[0] = v0; t->v[1] = v1; t->v[2] = v2; t->v[3] = v3;
double check = tetrahedron_determinant(t);
//check should be greater than 0 is the tetrahedron is positively oriented.
//reversing_labels reverses the sign of check - and thus the orientation
191
192
193
         if (check < 0) {
  t->v[0] = v1;
  t->v[1] = v0;
195
197
         else if(check == 0) {
  fprintf(stderr, "ERROR: Tried to make coplanar tetrahedron\n");
  exit(-1);
199
201
         //Storing the faces - each face is oriented correctly
203
       //Storing the faces - e:

t->f[0].v[0] = t->v[0];

t->f[0].v[1] = t->v[1];

t->f[0].v[2] = t->v[2];

t->f[1].v[0] = t->v[2];

t->f[1].v[1] = t->v[1];

t->f[2].v[0] = t->v[2];

t->f[2].v[1] = t->v[3];
205
207
209
211
       t->f[2].v[1] = t->v[0];
t->f[2].v[2] = t->v[0];
t->f[3].v[1] = t->v[3];
t->f[3].v[2] = t->v[1];
212
213
214
215
216
        t->adj[0] = t->adj[1] = t->adj[2] = t->adj[3] = NULL;
217
        t->circum[0] = t->circum[1] = t->circum[2]
t->checked = -1;
218
219
220
         return t;
221
222
\overline{224} In the bowyer_watson algorithm we start by using a big tetrahedron which 225 surrounds all of the points in consideration.
230 int shares_vertex_supert(Tetrahedron *t, int n) {
       int b = t-vr[0];

if ((b == n) || (b == n + 1) || (b == n + 2) || (b == n + 3))
232
          return 1;
234
       b = t->v[1];
if ((b == n) || (b == n + 1) || (b == n + 2) || (b == n + 3))
return 1;
236
238
        if ((b == n) || (b == n + 1) || (b == n + 2) || (b == n + 3))
240
241
242
243
244
       b = t->v[3];
if ((b == n) || (b == n + 1) || (b == n + 2) || (b == n + 3))
245
246
247
248 }
250 //Checks if faces f1 == f2, that is have the same vertices
      int equal(Face f1, Face f2) {
    if ((f1.v[0] + f1.v[1] + f1.v[2]) != (f2.v[0] + f2.v[1] + f2.v[2])) {
251
253
254
       int a;

a = f1.v[0];

if ((a != f2.v[0]) && (a != f2.v[1]) && (a != f2.v[2])) {
255
256
257
       return 0;
}
258
259
       if ((a != f2.v[0]) && (a != f2.v[1]) && (a != f2.v[2])) {
   return 0;
261
262
263
       if ((a != f2.v[0]) && (a != f2.v[1]) && (a != f2.v[2])) {
   return 0;
}
265
267
268 return 1;
269 }
270 //Check is edges e1 == e2, that is have the same vertices.
272 int equal_edges(Edge e1, Edge e2) {
273    if((e1.v[0] != e2.v[0]) && (e1.v[0] != e2.v[1])) return 0;
274    if((e1.v[1] != e2.v[0]) && (e1.v[1] != e2.v[1])) return 0;
275
        return 1;
```

```
278 //Code for a DLL of Tetrahedron pointers follows
279 typedef struct DLL_NODE {
280 Tetrahedron *data;
281 struct DLL_NODE *next, *prev;
382 } DLL_NODE;
283
284 struct DLL{
285 DLL_NODE *first, *last;
286 };
287
DLL_NODE *make_node() {

DLL_NODE *new = malloc(sizeof(DLL_NODE));

if (new == NULL) {

printf(stderr, "ERROR: malloc failed\n");

exit(-1);

}
      new->next = NULL;
new->prev = NULL;
new->data = NULL;
294
297 return new;
298 }
299
300 DLL *make_list() {
301    DLL *new = malloc(sizeof(DLL));
302    if (new == NULL) {
        fprintf(stderr, "ERROR: malloc failed\n");
304        exit(-1);
305    }
306    - . . .
      new->first = NULL;
new->last = NULL;
306
308 return new;
309 }
310
int is_empty_list(DLL *list) {
   return (list->first == NULL);
}
314
315 void add_to_list (Tetrahedron *t, DLL *list) {
   DLL_NODE *node = make_node();
        node->data = t;
if (is_empty_list(list)) {
318
       list->last = node;
}
319
320
       list->first->prev = node;
321
322
323
      node->next = list->first;
list->first = node;
324
325
327
     void remove_node (DLL_NODE *node, DLL *list) {
   if (is_empty_list(list)) {
     fprintf(stderr,"ERROR tried to delete from empty list\n");
     exit(-1);
}
329
331
       }
if (node == (list->first)) {
       list->first = node->next;
}
333
335
336
        node->prev->next = node->next;
}
337
        if (node == (list->last)) {
  list->last = node->prev;
339
340
341
         else {
           node->next->prev = node->prev;
343
344
        free(node);
345
346 }
347
348 DLL_NODE *find_node (Tetrahedron *t, DLL *list) {
349 DLL_NODE *node;
         node = list->first;
while(node != NULL) {
  if (node->data == t) {
350
351
352
353
              return node;
354
        node = node->next;
}
355
356
358 exit(-1);
359 }
357
         fprintf(stderr, "Tetrahedron not present in list %p", t);
360
361 int list_length (DLL *list) {
      int count = 0;
DLL_NODE *node;
362
        node = list->first;
while(node != NULL) {
364
       ----(node != NULL)
++count;
node = node->next;
}
366
368
        return count;
370 }
```

```
377     temp = node;
378     node = node->next;
379     free(temp->data);
       free(temp->d
free(temp);
}
380
385
       //Print the contents of the doubly linked list, *list.
386
       void print_DLL(DLL *list) {
  int n;
387
388
          int k:
389
          DLL_NODE *node;
390
391
          FILE *file;
         if(list == del) {
   if ((file = fopen("Logs/Graph_3D.txt","w")) == NULL) {
    fprintf(stderr, "File not openable \n");
393
394
395
397
            }
398
          else {
399
           if ((file = fopen("Logs/DLL_3D.txt","w")) == NULL) {
   fprintf(stderr, "File not openable \n");
401
402
403
         fprintf(file, "num tetrahdrons: %d\n", list_length(list));
node = list->first;
while (node != NULL) {
405
406
407
          while (node != NULL) {
  fprintf(file, "Tetrahedron vertices:\n");
  for (k = 0; k < 4; ++k) {
    n = node->data->v[k];
    fprintf(file, "%d -- %lf, %lf, %lf\n", n, p0(n), p1(n), p2(n));
}
409
410
411
412
413
            node = node->next;
         if(fclose(file) == EOF) {
    fprintf(stderr, "Couldn't close file");
415
416
417
            exit(-1);
418
         }
419 }
420
420 //The code for a push down Face stack follows
421 typedef struct Stack{
423 int top_index;
424 int capacity;
425 Face *item;
426 } Stack;
$\frac{428}{428}$ Stack *make_stack() {
429    Stack *s = (Stack*) malloc(sizeof(Stack));
430    if (s == NULL) {
431        fprintf(stderr, "ERROR: malloc failed\n");
432        exit(-1);
433    }

        s->top_index = -1;
s->capacity = 100;
434
435
         c >capacity = 100;
s->item = (Face*) malloc(s->capacity * sizeof(Face));
if (s->item == NULL) {
  fprintf(stderr, "ERROR: malloc failed\n");
  exit(-1);
436
438
439
441 return s;
442 }
443
int is_empty_stack (Stack *s) {
   return ( s->top_index == -1 );
446 }
448 Face top (Stack *s) {
       if(!is_empty_stack(s)) {
   return s->item [s->top_index];
}
450
451
         else {
452
          fprintf(stderr,"ERROR top called on empty stack");
453
        exit(-1);
454
455
456 }
457
458 void push (Face t, Stack *s) {
       int i = s -> top_index + 1;
if ( i >= s -> capacity ) {
   s->capacity *= 2;
   s->item = realloc(s->item, s->capacity * sizeof(Face));
459
461
464 s -> item[i] = t;
465 s -> top_index = i;
466 }
467
468 void pop (Stack *s) {
469 -- (s -> top_index);
471
472 void free_stack(Stack *s) {
473 free(s->item);
474 free(s);
475 }
```

```
477 //Code for a pushdown Tetrahedron pointer stack follows 478 typedef struct T_Stack{
          int top_index;
int capacity;
Tetrahedron **item;
 479
 481
 482 } T_Stack;
 483
483 T_Stack *make_t_stack() {
485 T_Stack *s = (T_Stack*) malloc(sizeof(T_Stack));
486 if (s == NULL) {
487 fprintf(stderr, "ERROR: malloc failed\n");
488 exit(-1);
489 }
 489
        s->top_index = -1;
s->capacity = 100;
s->item = malloc(s->capacity * sizeof(Tetrahedron*));
if (s->item == NULL) {
 490
 492
         fprintf(stderr, "ERROR: malloc failed\n");
exit(-1);
 494
 496
 498 }
int is_empty_t_stack (T_Stack *s) {
    return ( s->top_index == -1 );
}
 503
504 Tetrahedron *top_t (T_Stack * s) {
505    if(!is_empty_t_stack(s)) {
              return s->item [s->top_index];
 506
         else {
 508
 509
           fprintf(stderr,"ERROR top called on empty T_Stack");
exit(-1);
        }
 511
 512 }
 513
513
void push_t (Tetrahedron *t, T_Stack * s) {
515
int i = s -> top_index + 1;
516
if ( i >= s -> capacity ) {
517
s->capacity *= 2;
518
s->item = realloc(s->item, s->capacity * sizeof(Tetrahedron*));
s->item = reall
519 }
520 s->item[i] = t;
521 s->top_index = i;
522 }
 523
 524 void pop_t (T_Stack * s) {
525    -- (s -> top_index);
526 }
 527
free(s->item);
free(s);
free(s);
 528 void free_t_stack(T_Stack *s) {
 533 //square the double d
 534 double sq (double d) {
535 return d * d;
536 }
537
           \begin{array}{lll} c[1] &= p1(t- > v[2]) &- e1;\\ c[2] &= p2(t- > v[2]) &- e2;\\ c[3] &= sq(c[0]) &+ sq(c[1]) &+ sq(c[2]);\\ d[0] &= p0(t- > v[3]) &- e0;\\ d[1] &= p1(t- > v[3]) &- e1;\\ d[2] &= p2(t- > v[3]) &- e2;\\ d[3] &= sq(d[0]) &+ sq(d[1]) &+ sq(d[2]); \end{array} 
 552
 553
 554
 555
 556
 558
          if (determinant_4(a, b, c, d) <= 0)</pre>
         return 0;
else
 560
 562
             return 1;
 564
 565 //Checks if face f is shared with a tetrahedron in list.
566 //The search starts at node in list, and does backwards
                                                                          and does backwards search, then forawrds.
       int shared_face_in_graph(Face e, DLL_NODE *node, DLL *list) {
 568
         DLL_NODE *temp;
       temp = node->prev;
while (temp != NULL) {
  if (equal(e, temp->data->f[0])) return 1;
  else if (equal(e, temp->data->f[1])) return 1;
  else if (equal(e, temp->data->f[2])) return 1;
 570
 572
```

```
else if (equal(e, temp->data->f[3])) return 1;
        temp = temp->prev;
}
576
577
578
         temp = node->next;
while (temp != NULL) {
  if (equal(e, temp->data->f[0])) return 1;
  else if (equal(e, temp->data->f[1])) return 1;
  else if (equal(e, temp->data->f[2])) return 1;
  else if (equal(e, temp->data->f[3])) return 1;
579
580
581
583
584
        temp = temp->next;
}
585
586
587
         return 0;
588 }
589
      Recursively checks the neighbours of Tetrahedron *t. If a neighbour is bad it is added to DLL *bad and checked itself. Otherwise neighbour is marked as checked.
591
      At each step, tetrahedrons are ignored that have a checked value equal to run.
593
      void check_neighbours(Tetrahedron *t, int run, DLL *bad) {
   DLL_NODE *node;
595
597
         Tetrahedron *nbhr:
         int i;
599
          t->checked = run; //Don't look at this tetrahedron again this step.
         for(i = 0; i < 4; ++i) {
  nbhr = t->adj[i];
  //Check if the neighbour is non NULL
  if(nbhr != NULL) {
601
603
604
                 //Only check each tetrahedron once
605
                 //Unly check each tetrahedron once
if(nbhr->checked < run) {
   if (in_sphere(nbhr, p0(run), p1(run), p2(run))) {
      node = find_node(nbhr, del);
      add_to_list(nbhr, bad);
      remove_node(node, del);
      check_neighbours(nbhr, run, bad);
}</pre>
607
608
609
610
611
612
                   nbhr->checked = run;
}
                   else {
613
614
615
           }
616
617
618 }
619 }
620
      //Checks if *t has face f belonging to nbhr, and if so updates *t's adjacency
int find_matching_face(Tetrahedron *t, Face f, Tetrahedron *nbhr) {
   if (equal(t->f[0], f)) {
621
622
624
           t->adj[0] = nbhr;
625
             return 1;
626
         if (equal(t->f[1], f)) {
          t->adj[1] = nbhr;
628
             return 1;
630
         if (equal(t->f[2], f)) {
632
          t->adj[2] = nbhr;
return 1;
633
634
         if (equal(t->f[3], f)) {
          t->adj[3] = nbhr;
return 1;
636
637
638
          fprintf(stderr, "Found no match for a face in a tetrahedron\n");
640
          exit(-1):
641
642 }
         return 0;
643
644
      Checks if face f is shared by any tetrahedron in a search starting at node and noving backwards. If it is, the tetrahedron pointed to by node has adj[face_no] updated with the found tetrahedron.
      void find_adjacent_tetra_to_face(Face f, DLL_NODE *node, int face_no) {
   DLL_NODE *comp = node->prev; //Why can't this be NULL?
649
650
651
652
          if (node->data->adj[face_no] == NULL) {
             while(comp != NULL) {
   if (equal(f, comp->data->f[0])) {
     comp->data->adj[0] = node->data;
     node->data->adj[face_no] = comp->data;
653
654
655
657
                        break;
                    else if (equal(f, comp->data->f[1])) {
  comp->data->adj[1] = node->data;
659
661
                        node->data->adj[face_no] = comp->data;
663
                    else if (equal(f, comp->data->f[2])) {
  comp->data->adj[2] = node->data;
  node->data->adj[face_no] = comp->data;
665
666
667
                        break;
                    else if (equal(f, comp->data->f[3])) {
  comp->data->adj[3] = node->data;
  node->data->adj[face_no] = comp->data;
669
670
671
```

```
comp = comp->prev;
}
675
       }
677 }
678 //Finds all adjacencies moving backwards in a list starting at start 680 void find_adjacencies(DLL_NODE *start) {
681 Face face;
 682
        DLL_NODE *node;
 683
         node = start;
while (node != NULL) {
 684
            //check face 1
face = node->data->f[0];
686
 687
 688
           find_adjacent_tetra_to_face(face, node, 0);
//check face 2
690
            face = node->data->f[1];
           find_adjacent_tetra_to_face(face, node, 1);
            //check face 3
face = node->data->f[2];
 692
           find_adjacent_tetra_to_face(face, node, 2);
//check face 4
face = node->data->f[3];
694
696
           find_adjacent_tetra_to_face(face, node, 3);
698
           node = node->prev;
701 }
 //Make all Tetrahedrons which *t points to point to NULL instead of back to *t void delete_ties(Tetrahedron *t) {
        int i, j;
for(i = 0; i < 4; ++i) {</pre>
 706
          for(i = 0; i < 4; ++1) t
if(t->adj[i] != NULL) {
  for(j = 0; j < 4; ++j) {
    if(t->adj[i]->adj[j] == t) {
      t->adj[i]->adj[j] = NULL;
}
 707
 708
 709
 710
                 }
715 }
716 }
717 7
 712
 718 //Produces the Delaunay tetrahedrilisation of our points in p
 719 void bowyer_watson() {
        int i, j;
 721
         int index, shared_face, found_bad;
         Face f;
         Tetrahedron *t1, *t2;
DLL *bad = make_list();
DLL_NODE *node, *temp;
Stack *polyhedron = make_stack(); //The Delaunay cavity
 723
 725
         //border_tetras will hold the good tetrahedrons on the border of the cavity
T_Stack *border_tetras = make_t_stack();
 729
         //Add super Tetrahedron vertices to array of points
index = 3 * num_points - 1;
p[++index] = 0; p[++index] = 0; p[++index] = 100000; //Vertice 1
p[++index] = -100000; p[++index] = -100000; p[++index] = -100000; //Vertice 2
p[++index] = 100000; p[++index] = -100000; p[++index] = -100000; //Vertice 3
p[++index] = 0; p[++index] = 100000; p[++index] = -100000; //Vertice 4
 731
 735
         Tetrahedron *big_t =
make_tetrahedron(num_points, num_points + 1, num_points + 2, num_points + 3);
 737
 739
         add_to_list(big_t, del);
740
741
         for (i = 0; i < num_points; ++i) {</pre>
 742
             empty_dll(bad); //reset the bad tetrahedrons
            node = del->first;
found_bad = 0;
 743
            while (!found_bad) { //Find one bad tetrahedron
 745
 746
747
              if (node == NULL) {
   fprintf(stderr, "%s\n", "ERROR: found no bad tetrahedron");
 748
 749
               if (in_sphere(node->data, p0(i), p1(i), p2(i))) {
  add_to_list(node->data, bad);
 750
 751
 752
                  remove_node(node, del);
                  found_bad = 1;
 753
 754
               else node = node->next;
 756
            check_neighbours(bad->first->data, i, bad); //Find all bad tetrahedrons
node = bad->first;
while(node != NULL) {
 758
 760
              for(j = 0; j < 4; ++j) {
  f = node -> data -> f[j];
  shared_face = shared_face_in_graph(f, node, bad);
 762
                  if(!shared_face) {//create the Delaunay cavity
 764
                 push_t(node->data->adj[j], border_tetras);
}
                     push(f, polyhedron);
 766
 768
 769
               node = node->next;
 770
             //Create the new tetrahedrons and update adjacencies
            //with the good tetrahedrons on the border of the cavity.
```

```
f = top(polyhedron);
               cop.posymeurom;
add_to_list(make_tetrahedron(f.v[0], f.v[1], f.v[2], i), del);
node = del->first; //different line - marks start of new tetral
t2 = top_t(border_tetras);
if(t2 != NULL) {
   t1 = del->first->data;
 774
 775
 776
 778
 779
                   find_matching_face(t1, f, t2);
find_matching_face(t2, f, t1);
 781
                pop_t(border_tetras);
 782
               pop(polyhedron);
//inside the while loop is a repeat of the above without the different line
 783
 784
                while (!is_empty_stack(polyhedron)) {
  f = top(polyhedron);
 785
 786
                  recopyfication;
add_to_list(make_tetrahedron(f.v[0], f.v[1], f.v[2], i), del);
t2 = top_t(border_tetras);
if(t2 != NULL) {
   t1 = del->first->data;
 787
789
                       find_matching_face(t1, f, t2);
find_matching_face(t2, f, t1);
791
793
                pop_t(border_tetras);
795
                pop(polyhedron);
               find_adjacencies(node); //Fill in adjacencies between new tetrahedrons
797
799
            node = del->first
               //Remove tetrahedrons which intersect the super tetrahedron if(shares_vertex_supert(node->data, num_points) == 1) {
801
802
                  temp = node;
node = node->next;
delete_ties(temp->data);
803
805
806
                    free(temp->data);
807
                  remove_node(temp, del);
808
            node = node->next;
}
              else {
809
810
811
812
           //clean up
813
814
           empty_dll(bad);
free(bad);
815
816
            free_stack(polyhedron);
817
          free_t_stack(border_tetras);
818
819

820 //returns the Euclidean norm squared of input

821 double norm_sq(double *input) {

822 return sq(input[0]) + sq(input[1]) + sq(input[2]);

823 }
824
 825 //subtracts b from a and stores in r
826 void vector_subtraction(double a1, double a2, double a3, 827 double b1, double b2, double b3, double *r) {
          r[0] = a1 - b1;
828
          r[1] = a2 - b2;

r[2] = a3 - b3;
830
831
832
832 //crosses u with v and stores in r
834 void cross_product(double *u, double *v, double *r) {
835 r[0] = determinant_2(u[1], u[2], v[1], v[2]);
836 r[1] = -1 * determinant_2(u[0], u[2], v[0], v[2]);
837 r[2] = determinant_2(u[0], u[1], v[0], v[1]);
838 }
839
840 //Multiplies the vector a by the scalar k, storing back in a
841 void scalar_mult(double k, double *a) {
842 a[0] *= k; a[1] *= k; a[2] *= k;
843 }
844
845
       //Finds the circumcentre of *tet
void circumcentre_sphere(Tetrahedron *tet) {
           double r;
double volume; //Will hold scaled volume
847
848
           double volume; //Will hold scaled volume
double t[3], u[3], v[3]; //Want to translate tet->v[3] to the origin
double uxv[3], vxt[3], txu[3]; //Will hold cross products
vector_subtraction(p0(tet->v[0]), p1(tet->v[0]), p2(tet->v[0]),
p0(tet->v[3]), p1(tet->v[1]), p2(tet->v[1]),
vector_subtraction(p0(tet->v[1]), p1(tet->v[1]), p2(tet->v[1]),
p0(tet->v[3]), p1(tet->v[3]), p2(tet->v[3]), u);
849
850
851
852
853
           855
856
857
           double t_norm = norm_sq(t);
double u_norm = norm_sq(u);
double v_norm = norm_sq(v);
859
           cross_product(u, v, uxv);
cross_product(v, t, vxt);
861
            cross_product(t, u, txu);
volume = tetrahedron_determinant(tet);
863
           r = (t_norm * uxv[0]) + (u_norm * vxt[0]) + (v_norm * txu[0]);

tet->circum[0] = p0(tet->v[3]) + (r / (2 * volume));

r = (t_norm * uxv[1]) + (u_norm * vxt[1]) + (v_norm * txu[1]);

tet->circum[1] = p1(tet->v[3]) + (r / (2 * volume));

r = (t_norm * uxv[2]) + (u_norm * vxt[2]) + (v_norm * txu[2]);
865
867
868
869
            tet->circum[2] = p2(tet->v[3]) + (r / (2 * volume));
```

```
po(t.v[i]), pi(t.v[i]), p2(t.v[i]),
po(t.v[i]), p1(t.v[i]), p2(t.v[i]), b);
cross_product(a, b, axb);
//Norms are really the norm squared
double a_norm = norm_sq(a);
double b_norm = norm_sq(b);
double axb_norm = norm_sq(axb);
 880
 882
 884
 885
 886
             scalar_mult(a_norm, b);
scalar_mult(b_norm, a);
            scalar_mult(b_norm, a);
vector_subtraction(b[0], b[1], b[2], a[0], a[1], a[2], c);
cross_product(c, axb, cxaxb); // read cxaxb as c x (a x b)
cc[0] = (cxaxb[0] / (2 * axb_norm)) + p0(t.v[2]);
cc[1] = (cxaxb[1] / (2 * axb_norm)) + p1(t.v[2]);
cc[2] = (cxaxb[2] / (2 * axb_norm)) + p2(t.v[2]);
888
 890
892
894
895 //Finds all edges containing v in del, storing in edges and a pointer to 896 //a tetrahedron containing that edge is stored in tetras.
897 //Returns the number of edges found sharing v.
        int find_all_edges(int v, Edge *edges, Tetrahedron **tetras, int *capacity) {
   DLL_NODE *node = del->first;
 898
 900
             int i, j;
int n;
 901
              int num_edges = 0;
 902
              Tetrahedron *t;
 904
             Edge e:
             rage e;
int new_edge;
while (node != NULL) {
    t = node -> data;
    if((t->v[0] == v) || (t->v[1] == v) || (t->v[2] == v) || (t->v[3] == v)) {
        if(t->v[0] == v) n = 0;
        else if(t->v[1] == v) n = 1;
}
 905
 906
 908
 ana
                     else if(t->v[1] == v) n = 1;

else if(t->v[2] == v) n = 2;

else n = 3;

e.v[0] = t->v[n];

for (j = 1; j < 4; ++j) {

    new_edge = 1;

    e.v[1] = t->v[(n + j) % 4];

    for (i = 0; i < num_edges; ++i)

        if(equal_edges(edges[i], e)) {

        new_edge = 0;

    }

    if(new_edges) {
 910
 912
913
 914
 915
 916
917
 918
 919
                          if(new_edge) {
  if ((num_edges + 1) > *capacity) {
    *capacity *= 2;
    if(realloc(edges, *capacity * sizeof(Edge)) == NULL) {
 921
 923
                                    fprintf(stderr, "ERROR: realloc failed\n");
925
 927
                                  if(realloc(tetras, *capacity * sizeof(Tetrahedron*)) == NULL) {
   fprintf(stderr, "ERROR: realloc failed\n");
   exit(-1);
 929
 931
                               tetras[num_edges] = t;
edges[num_edges++] = e;
 933
 934
935
               }
 937
          node = node->next;
}
 938
940 return num_edges;
941 }
 943 //find another point on the line ab, in direction ab, storing in r
        void point_on_line(double *a, double *b, double *r) {
          double min;
double d, e, f;
          int i;
if(fabs(b[0] - a[0]) == 0) d = 100000;
else d = fabs(b[0] - a[0]);
if(fabs(b[1] - a[1]) == 0) e = 100000;
else e = fabs(b[1] - a[1]);
if(fabs(b[2] - a[2]) == 0) f = 100000;
else f = fabs(b[2] - a[2]);
min = d < e ? d : e;
min = min < f ? min : f;
for (i = 0; i < 3; ++i) {
    //find vector between a and b, scale it and add back a
    r[i] = (b[i] - a[i]) * (200 / min) + a[i];
}</pre>
 946
 947
 948
 950
 952
 954
 956
 958
 960 }
961 //r will contain the indices of the faces in *t containg e 963 void faces_with_edge(Edge e, Tetrahedron *t, int *r) {
            int i, j;
Face f;
 964
          int check;
int count = 0;
for (j = 0; j < 4; ++j) {
   f = t->f[j];
}
 966
 968
 969 f = t->f[]
970 check = 0;
```

```
973
                      if (check == 2) {
  974
  975
                          r[count] = j;
  976
                                ++count;
  977
                              if(count == 2) break;
  978
                       }
                 }
  979
  980 }
  981
 981 //Will see if point d forms a positively oriented tetrahedron with triangle f 983 double orientation_check(Face f, double *d) {
984 double a[3], b[3], c[3];
985 a[0] = p0(f.v[0]) - d[0];
986 a[1] = p1(f.v[0]) - d[1];
                  a[2] = p2(f.v[0]) - d[2];

b[0] = p0(f.v[1]) - d[0];
  987
                b[1] = p1(f.v[1]) - d[1];
b[2] = p2(f.v[1]) - d[2];
  989
c[0] = p0(f.v[2]) - d[0];

992    c[1] = p1(f.v[2]) - d[1];

993    c[2] = p2(f.v[2]) - d[2];

994    return determinant_3(a, b, c);

995 }
 997 //Finds a point on the unbounded voronoi edge formed by Face f
998 //Which belongs to a tetrahedron with circumcentre a, storing the point in pg
  999
              void compute_unbounded_edge(Face f, double *a, Polygon_3D *pg) {
                  double cc[3], temp[3];
double check;
1000
1001
                    circumcentre_circle(f, cc);
                   check = orientation check(f, a):
1003
                  check = orientation_check(f, a);
if (check == 0) {
    fprintf(stderr, "Error: circumcentre lies on face of tetrahedron\n");
    fprintf(stderr, "Circumcentre is %lf %lf %lf %lf\n", a[0], a[1], a[2]);
    fprintf(stderr, "Lying on face:\n");
    fprintf(stderr, "%lf %lf %lf\n", p0(f.v[0]), p1(f.v[0]), p2(f.v[0]));
    fprintf(stderr, "%lf %lf %lf\n", p0(f.v[1]), p1(f.v[1]), p2(f.v[1]));
    fprintf(stderr, "%lf %lf %lf\n", p0(f.v[2]), p1(f.v[2]), p2(f.v[2]));
    exit(-1):
1004
1005
1006
1007
1008
1009
1010
1011
                       exit(-1);
1012
                   //Depending on the orientation of the tetrahedron formed by f and a,
1013
                //bepending on the orientation of the tetrahedron formed by f and
//the necessary unbounded edge will point in different directions
if (check > 0) point_on_line(a, cc, temp);
else point_on_line(cc, a, temp);
add_to_polygon(temp, pg);
1014
1015
1016
1017
1018 }
1019
1020 //Copies pg1 into pg2, in reverse order of points.
1021 void copy_pg_reverse(Polygon_3D *pg1, Polygon_3D *pg2) {
               int i;
double a[3];
1022
                  for(i = ((pg1->num_items / 3) - 1); i >= 0; --i) {
    a[0] = pg1->v[3 * i];
    a[1] = pg1->v[3 * i + 1];
    a[2] = pg1->v[3 * i + 2];
1024
1026
               - pg1->v[3 * i + 2
add_to_polygon(a, pg2);
1028
1029
1030 }
1032 //Copies pg1 into pg2
1033 void copy_pg(Polygon_3D *pg1, Polygon_3D *pg2) {
1034
                int i;
 1035
                counse a[3];
for(i = 0; i < (pg1->num_items/ 3); ++i) {
    a[0] = pg1->v[3 * i];
    a[1] = pg1->v[3 * i + 1];
    a[2] = pg1->v[3 * i + 2];
    add + polymore.
1036
1037
1038
1039
               --, - pg1->v[3 * i + 2 add_to_polygon(a, pg2);
1040
1041
1042 }
1043
1044 //Finds the Voronoi face for Delaunay edge e in tetrahedron *start
1045 //This is associated to the polyhedron dual to the vertex labelled vertex.
1046 //The Voronoi face will the faceindexed by face_num in the polyhedron
             1047
1048
1049
1050
                  int faces[2], start_faces[2];
int i = 0;
1051
1052
                  Polygon_3D *pg;
Face f;
1053
1054
                   int done = 0;
1055
                  //This is the face of the polygon that we are working with:
pg = voro[vertex]->faces[face_num];
if(start == NULL) {
   fprintf(stderr, "ERROR: started with NULL tetrahedron\n");
1057
1059
1061
                       exit(-1):
 1062
                  frame="font-size: 150%; font-size: 
1063
 1064
1065
1066
1067
1069
```

```
1070
                  while(next != start) {//Not returned to starting point
                     current = next;
if(i == 1) add_to_polygon(current->circum, pg);
                     if(1 == 1) add_to_polygon(current->circum, pg);
else add_to_polygon(current->circum, temp_pg);
faces_with_edge(e, current, faces);
if (current->adj[faces[0]] != prev) {
   if (current->adj[faces[0]] == NULL) {
      f = current->f[faces[0]];
      if(i == 1) compute_unbounded_edge(f, current->circum, pg);
      else {
 1073
 1074
 1075
 1076
 1077
 1078
 1080
                              compute_unbounded_edge(f, current->circum, temp_pg);
 1081
                               copy_pg_reverse(temp_pg, pg);
 1082
 1083
                            voro[vertex]->unbounded = 1;
 1084
1086
                         next = current->adj[faces[0]];
                         prev = current;
 1088
                      else if (current->adj[faces[1]] == prev) {
                         fprintf(stderr, "ERROR: incorrect adjacency\n");
fprintf(stderr, "took face %d to start\n", i);
fprintf(stderr, "%p and %p should not be adjacent",
1090
 1092
                                                  prev, current->adj[faces[1]]);
                         exit(-1);
 1094
 1095
                      else {
  if (current->adj[faces[1]] == NULL) {
 1096
 1098
                            f = current->f[faces[1]];
if(i == 1) compute_unbounded_edge(f, current->circum, pg);
else {
 1099
1100
                                compute_unbounded_edge(f, current->circum, temp_pg);
                               copy_pg_reverse(temp_pg, pg);
1103
                            voro[vertex]->unbounded = 1:
1104
1105
1106
                        next = current->adj[faces[1]];
prev = current;
1108
1109
                     }
1111
                  if(next == start) done = 1;
                 f = start->f[start_faces[i]];
if(i == 1) compute_unbounded_edge(f, start->circum, pg);
else {
1113
               else {
1114
1115
1116
                     compute_unbounded_edge(f, start->circum, temp_pg);
copy_pg_reverse(temp_pg, pg);
1119
 1120
                  voro[vertex]->unbounded = 1;
             }
++i;
1121
1123
          if(done) copy_pg(temp_pg, pg);
1125 }
        //Computes the Voronoi diagram of input point set
1127
1128 void voronoi() {
         int i, j;
int num_edges;
DLL_NODE *node;
1129
1131
           DLL_NUDE *node;
int capacity = 200;
Polygon_3D *temp_pg = make_polygon(3000);
//edges stores each edge e with i as a vertice, and tetras stores a
//tetrahedron containing e, for each aforementioned edge.
1132
          //tetrahedron containing e, for each aforementioned edge.
Tetrahedron **tetras = malloc(capacity * sizeof(Tetrahedron*));
Edge *edges = malloc(capacity * sizeof(Edge));
if ((edges == NULL) || (tetras == NULL)){
    fprintf(stderr, "%s\n", "ERROR: Malloc failed");
    exit(-1);
}
1135
1136
1138
1139
1140
1141
1142
1143
            node = del->first;
            while (node != NULL) { //Compute the circumcentres
circumcentre_sphere(node->data);
1144
1145
           node = node->next;
}
1146
1147
1148
1149
            voro = malloc(num_points * sizeof(Polyhedron*));
           if (voro == NULL){
  fprintf(stderr, "%s\n", "ERROR: Malloc failed");
1150
 1151
1152
              exit(-1);
1153
1154
           for(i = 0; i < num_points; ++i) { //Compute Voronoi region</pre>
             num_edges = find_all_edges(i, edges, tetras, &capacity);
voro[i] = make_polyhedron(num_edges);
for(j = 0; j < num_edges; ++j) { //Compute Voronoi face
    voronoi_face(tetras[j], edges[j], i, j, temp_pg);
}</pre>
1156
1158
1160
1162 free(temp_pg);
1163 }
 1161
1164
1164
1165 //Prints the input points to a file
1166 void print_points() {
1167 int i;
1168 FILE *file;
```

```
if ((file = fopen("Logs/Points_3D.txt","w")) == NULL) {
  fprintf(stderr, "File not openable \n");
1171
                 exit(-1);
           fprintf(file, "%d\n", num_points);
for (i = 0; i < num_points; ++i) {
   fprintf(file, "%lf %lf\n", p0(i), p1(i), p2(i));
}</pre>
1174
1175
1176
            if(fclose(file) == EOF) {
  fprintf(stderr, "Couldn't close file");
1177
1178
           .printf(st
exit(-1);
}
1179
1180
1181 }
1182
1183 //Prints the voronoi diagram to a file void print_voronoi() {
            int i, j, k;
FILE *file;
if ((file = fopen("Logs/Voro_3D.txt","w")) == NULL) {
    fprintf(stderr, "File not openable \n");
1185
1187
1189
               exit(-1);
            1191
1193
1194
1195
1197
1198
1199
1201
1202
                    fprintf(file, "\n");
1204
               }
1205
             if(fclose(file) == EOF) {
  fprintf(stderr, "Couldn't close file");
1206
1207
           exit(-1);
1208
1209
1210 }
1211
1212 //Finds a bounding box for the input points void bounding_box() {
           void bounding_box() {
   int i;
   bmin[0] = bmin[1] = bmin[2] = 0;
   bmax[0] = bmax[1] = bmax[2] = 0;
   for (i = 0; i < num_points; ++i) {
      if (bmin[0] > p0(i)) bmin[0] = p0(i);
      else if (bmax[0] < p0(i)) bmax[0] = p0(i);
      if (bmin[1] > p1(i)) bmin[1] = p1(i);
      else if (bmax[1] < p1(i)) bmax[1] = p1(i);
      if (bmin[2] > p2(i)) bmin[2] = p2(i);
      else if (bmax[2] < p2(i)) bmax[2] = p2(i);
   }
}</pre>
1214
1215
1216
1218
1219
1220
1224
            f
bmin[0] -= 0.5; bmax[0] += 0.5;
bmin[1] -= 0.5; bmax[1] += 0.5;
bmin[2] = -fabs(bmax[2]) - 1.5; bmax[2] = fabs(bmin[2]) + 0.5;
glMatrixMode(GL_PROJECTION); // To operate on the Projection matrix
gllmadlantix()
1226
1227
1228
             glLoadIdentity();
             glOrtho(bmin[0], bmax[0],
bmin[1], bmax[1],
bmin[2], bmax[2]);
1230
1231
1234
        //This draws the Delaunay tetrahedrilisation with colours.
void draw_tetrahedrons() {
  int i = 0;
1235
1236
1237
             int j;
DLL_NODE *node;
1238
1239
1240
             Face f;
1241
1242
             glPolygonMode( GL_FRONT_AND_BACK, GL_FILL );
            glPolygonMode( GL_FRONT_AND_BACK, GL_FILL );
glBegin(GL_TRIANGLES);
node = del->first;
while (node != NULL) {
   glColor4d(color[3 * i], color[3 * i + 1], color[3 * i + 2], 0.5);
   for (j = 0; j < 4; ++j) {
      f = node->data->f[j];
      glVertex3d(p0(f.v[0]), p1(f.v[0]), p2(f.v[0]));
      glVertex3d(p0(f.v[1]), p1(f.v[1]), p2(f.v[1]));
      glVertex3d(p0(f.v[2]), p1(f.v[2]), p2(f.v[2]));
   }
   node = node->next;
1243
1244
1245
1246
1247
1248
1249
1251
1252
               node = node->next;
++i;
1253
1255
             glEnd();
1257 }
1259 //This draws a blue mesh of the delaunay tetrahedrilisation
1260
         void draw_tetrahedron_mesh() {
1261
           DLL_NODE *node;
             int i;
double a, b, c;
1263
1264
1265
             glPolygonMode( GL_FRONT_AND_BACK, GL_LINE );
glBegin(GL_TRIANGLES);
```

```
1268 a = 0.1, b = 0.3, c = 0.6;

1269 node = del->first;

1270 while (node != NULL) {

    glColor4d(a, b, c, 0.5);

    for (i = 0; i < 4; ++i) {

        f = node->data->f[i];
                        1 = node->data->f[i];
glVertex3d(p0(f.v[0]), p1(f.v[0]), p2(f.v[0]));
glVertex3d(p0(f.v[1]), p1(f.v[1]), p2(f.v[1]));
glVertex3d(p0(f.v[2]), p1(f.v[2]), p2(f.v[2]));
}
  1274
 1276
                   node = node->next;
}
  1277
 1278
1280 glEnd();
1281 }
  1283 //This draws the original points in yellow
                void draw_points(int color_var, int cull_on) {
  int i;
 1284
 1286
                       glBegin(GL_POINTS);
                   if(color_var == 0)
  glColor3d(1.0,1.0,1.0);
else
 1288
                   glColor3d(1.0,1.0,0.0);

for (i = 0; i < num.points; ++i) {

   if(!(cull_on && voro[i]->unbounded))

      glVertex3d(p0(i), p1(i), p2(i));

}
 1290
 1292
  1293
 1294
 1296 glEnd();
1297 }
 1298
 //Draws the Voronoi diagram in colour. If cull_on unbounded regions are removed.

1300 void draw_voronoi(int cull_on) {
                      1301
 1302
 1303
 1304
 1305
 1306
                                    for(j = 0; j < voro[i]->num_faces; ++j) {
  pg = voro[i]->faces[j];
  1307
  1308
                                           pg volume | volu
 1309
  1310
 1311
  1312
 1313
                                          glEnd();
 1314
1316
1317
1318
 //Draws the Voronoi diagram in mesh. If cull_on unbounded regions are removed. solved draw_voronoi_mesh(int cull_on) {
                 int i, j, k;
Polygon_3D * pg;
for(i = 0; i < num_points; ++i) {
   if(!(cull_on && voro[i]->unbounded)){
     glColor3d(1.0, 1.0, 1.0);
     glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
   for(i = 0; i < voro[i]->num_faces: ++i) {
 1321
 1323
  1326
                                     for(j = 0; j < voro[i]->num_faces; ++j) {
  pg = voro[i]->faces[j];
 1327
                                       pg - voro[1]->faces[j];
glBegin(GL_POLYGON);
for(k = 0; k < (pg->num_items / 3); ++k) {
    glVertex3d(pg->v[3 * k], pg->v[3 * k + 1], pg->v[3 * k + 2]);
}
 1329
  1330
 1331
                                          glEnd();
1336 }
1337 }
1338
1338
 1339 //Below are functions for moving the figure around
 void rotate_x_up() {
1340    r_x += 2.0;
1342    fmod(r_x, 360);
 1343 }
 1344
 1345 void rotate_x_down() {
 1346
                 r_x -= 2.0;
fmod(r_x, 360);
 1347
 1348 }
 1350 void rotate_y_up() {
1351    r_y += 2.0;
1352    fmod(r_y, 360);
1353 }
 1354
1356 rotate_y_dow
r_y -= 2.0;
1357 fmod(r_y, 360);
1358 }
  1355 void rotate_y_down() {
  1359
 1360 void zoom_in() {
1361 zoom *= 1.05;
1362 }
 1363
 1364 void zoom_out() {
1365 zoom /= 1.05;
1366 }
```

```
1368 void tumbling() {
                 if (tumble_on) {
  tumble += 1.2;
  fmod(tumble, 360);
  #ifdef_WIN32
 1369
 1370
 1371
 1372
 1373
                          Sleep(50);
 1374
                         #else
                        sleep(0.03);
#endif
 1375
1377 glutPostRedisplay();
1378 }
1379 }
 1380
 1381 //Displays the results graphically 1382 void display() {
               glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glMatrixMode(GL_MODELVIEW);
 1383
                    glLoadIdentity();
//glTranslated(0.0, 0.0, -max -4.0);
 1385
                   | The state of the
 1387
 1389
 1391
 1392
 1393
                   ir (p_on)
draw_points(0, cull_on);
if (state == 0) draw_points(0, 0);
else if (state == 1) draw_tetrahedrons();
else if (state == 2)
 1395
 1396
 1397
                    draw_voronoi(cull_on);
else if (state == 3) {
  if(d_on)
 1399
 1400
 1401
                               draw tetrahedron mesh():
                     if (v_on)
 1402
 1403
                             draw_voronoi_mesh(cull_on);
 1404
                    glutSwapBuffers();
 1405
 1406 tumbling();
1407 }
 1408
 1409 //Initiliase our display settings
             void init() {
  glMatrixNode(GL_PROJECTION);
  glCloarColer(Oc.)
 1410
 1411
                   glClearColor(0.0f, 0.0f, 0.0f, 1.0f); //Black background glPointSize(3.00); //Enable Depth testing: glClearDepth(1.0f);
 1412
 1413
 1414
 1415
                   glClearDepth(1.01);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
//Making things look nicer
glHint(GL_LINE_SMOOTH_HINT, GL_NICEST);
 1416
  1417
 1418
                    glHint(GL_POLYGON_SMOOTH_HINT, GL_NICEST);
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
 1420
1423 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1424 }
 1425
 1426 //reshape window on Initiliase, and reshape.
1427 void reshape(GLsizei width, GLsizei height) {
                glClearColor ( 0,0,0,0);
 1428
                    glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 1429
                   // Set the viewport to cover the new window
glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION); // To operate on the Projection matrix
glLoadIdentity(); // Reset
 1430
  1431
gimatrixMode(GL_PROJECTION); // To operate on the Projection ma glloadIdentity(); // Reset

434  //Establish clipping planes.

glOrtho(bmin[0], bmax[0], bmin[1], bmax[1], -bmin[2], -bmax[2]);
 1437
 1438 void new_clip() {
 1439
                   glClearColor(0,0,0,0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
                   1441
 1442
 1443
 1445
 1446
 1447
 1449
 1451
 1453
1455 glLoadIdentity();
1456 glOrtho(bmin[0], bmax[0], bmin[1], bmax[1], -bmin[2], -bmax[2]);
1457 }
 1458
1458 //A looping keyboard function
1460 void kbd (unsigned char key, int x, int y) {
1461 switch (key) {
1462 case 'w':
 1463
                             rotate_x_down();
                                glutPostRedisplay();
 1465
                           break:
```

```
1466
1467
1468
             rotate_x_up();
1469
             glutPostRedisplay();
1470
1471
1472
1473
             rotate_y_down();
glutPostRedisplay();
1474
1475
             break;
1476
            rotate_y_up();
glutPostRedisplay();
1478
1479
1480
          case 'q':
  zoom_in();
1482
             glutPostRedisplay();
1484
1486
             zoom out():
1488
             glutPostRedisplay();
1490
             break;
1491
           case 27: //ESC key
1492
             exit(0);
1494
             break;
1495
          case 'p':
  state = 0;
  glutPostRedisplay();
1496
1497
1498
1499
          case 't':
1501
             state = 1;
1502
             glutPostRedisplay();
1503
1504
             break;
1505
1506
             state = 2;
glutPostRedisplay();
1507
1508
1509
             break;
1510
          case 'c':
  state = 3;
1511
1512
1513
             glutPostRedisplay();
             break;
1515
1516
             tumble_on = 1 - tumble_on;
glutPostRedisplay();
1517
1519
             break;
           case 'b':
1521
            cull_on = 1 - cull_on;
glutPostRedisplay();
break;
          case 'P':
  p_on = 1 - p_on;
  glutPostRedisplay();
1527
1528
1529
             break;
1531
             d_on = 1 - d_on;
glutPostRedisplay();
1532
1534
1535
1536
          case 'V':
  v_on = 1 - v_on;
1537
1538
             glutPostRedisplay();
1539
             break;
1540
1541
            new_clip();
glutPostRedisplay();
1542
1543
1544
             break;
1545
          case 'N':
1546
             bounding_box();
             glutPostRedisplay();
break;
1548
1550
1551
             1554
1556
1557
1558
1559
1560
1561
1562
             break;
1563 }
1564 }
```

```
1666 //Reads the input points either from stdin or reads them from a file
1567 //if from_file, then the file read from string input
1568 void read_points(int from_file, char *input) {
            int i;
FILE *file;
1569
1570
            if(!from_file) {
  printf("Enter how many points you want to enter\n");
  scanf("%d", &num_points);
  p = calloc(3 * (num_points + 4), sizeof(double));
1571
1572
1573
1574
1575
              printf("Please enter your 3D points separated by spaces\n");
1576
1577
             for (i = 0; i < num_points; ++i)
    scanf("%lf %lf %lf", &p[3 * i], &p[3 * i + 1], &p[3 * i + 2]);</pre>
1578
1579
1581
            else {
  if ((file = fopen(input, "r")) == NULL) {
    fprintf(stderr, "File not openable \n");
1583
 1584
1585
                    exit(-1);
                fscanf(file, "%d\n", & num_points);
fprintf(stderr, "number of points is %d\n", num_points);
p = malloc(3 * (num_points + 4) * sizeof(double));
1587
               if (p == NULL) {
    fprintf(stderr, "ERROR: malloc failed\n");
    exit(-1);
1589
1590
1591
1593
1594
              for (i = 0; i < num_points; ++i )
  fscanf(file, "%lf %lf %lf \n", &p[3 * i], &p[3 * i + 1], &p[3 * i + 2]);</pre>
1595
1597
                if(fclose(file) == EOF){
  fprintf(stderr, "Couldn't close the file\n");
1598
1599
1600
                   exit(-1);
               }
1601
1602
          }
1603 }
1604
1605 //Produces num_p random input points
         //Produces num_p random inpi
void randomise(int num_p) {
   int i;
   int a, b, c;
   int divide;
1606
1607
1608
1609
1610
            divide = ceil(0.01 * (num_p/2.0));
1611
           if(divide > 10) divide = 10;
p = malloc(3 * (num_points + 4) * sizeof(double));
if (p == NULL) {
    fprintf(stderr, "ERROR: malloc failed\n");
    exit(-1):
1612
1614
1615
            1616
            for(i = 0; i < num_p; ++i) {
  a = rand() % 2;
  b = rand() % 2;</pre>
1618
 1619
1620
             b = rand() % 2;
c = rand() % 2;
if(a == 0)
a = -1;
if(b == 0)
b = -1;
if(c == 0)
1622
1623
1624
1625
1626
               li(c == 0)
    c = -1;
p[3 * i] = a * (double)(rand()) / (RAND_MAX/divide);
p[3 * i + 1] = b * (double)(rand()) / (RAND_MAX/divide);
p[3 * i + 2] = c * (double)(rand()) / (RAND_MAX/divide);
1627
1628
1630
1631
1632 }
1633
1634 //Allocates memory to globals and calls funtions
1635 int main(int argc, char **argv) {
1636 clock_t ti;
            int i;
int max;
int from_file = 0;
int random_on = 0;
1637
1638
1639
1640
           time_t t;
int num_tetras;
1641
1642
1643
            #ifdef _WIN32
    srand((unsigned)time(&t));
//srand((long)1);
1644
1645
            #else
    srand48((unsigned)time(&t));
1647
1648
             #endif
1649
            //check how prog should be run
for (i = 0; i < argc; ++i) {
   if(strcmp(argv[i], "-file") == 0) {</pre>
1651
 1652
1653
                   //Read from a file.
from_file = 1;
1654
1655
 1656
                if(strcmp(argv[i], "-debug") == 0) {
  //Turn on logs and stderr messages.
  debug = 1;
1657
 1658
1659
1660
              if(strcmp(argv[i], "-random") == 0) {
  //Create a random set of points.
  random_on = 1;
1661
1663
```

```
if(strcmp(argv[i], "-help") == 0) {
1665
                       1666
1667
1668
1669
                                        "Delaunay tetrahedrilisation of 3D points.\n"
"Run the program to enter points through stdin.\n"
"Run with \"-file\" {filename} to give the program a file. File input format is:\n"
"3\n0.0 0.5 10\n-0.3 0.8 -5\n1.6 -0.6 0.0\n"
"That is, number of points followed by the points.\n"
"Points are separated by newlines,"
" co-ordinates are separated by spaces.\n"
"\"-random\" followed by a space and the number of points will"
"run the program on that number of random points.\n"
"\"-debug\" will produce logs of running.\n"
"One last note: the time taken with stdin input is wrong.\n");
1672
1674
1676
1677
1678
1680
                       exit(0);
1682
              if (random_on) {
               num_points = atoi(argv[argc - 1]);
randomise(num_points);
1684
1686
             else {
    read_points(from_file, argv[argc - 1]);
}
//Computing the Delauany triangulation
ti = clock();
del = make_list();
bowyer_watson();
ti = clock() - ti;
double time then - ((double)); (compared)
1688
1690
1692
1693
1694
              double time_taken = ((double)ti)/CLOCKS_PER_SEC;
fprintf(stderr, "Delaunay completed - took extra %lf seconds\n", time_taken);
1696
1697
1698
               voronoi():
1699
               ti = clock() - ti;
              tine_taken = ((double)ti)/CLOCKS_PER_SEC;
fprintf(stderr, "Voronoi completed - took extra %lf seconds\n", time_taken);
1700
1701
1702
1703
1704
                print_points();
print_DLL(del);
1705
1706
                  print_voronoi();
1707
1708
              num_tetras = list_length(del);
max = num_tetras < num_points ? num_points : num_tetras;
color = calloc(3 * max, sizeof(double));</pre>
1709
1710
              color = calloc(3 * max, sizeof(double));
//Create the colors
for (i = 0; i < max; ++ i) {
    #ifdef _WIN32
    color[3*i] = (double)(rand()) / RAND_MAX;
    color[3*i + 1] = (double)(rand()) / RAND_MAX;
    color[3*i + 2] = (double)(rand()) / RAND_MAX;</pre>
1713
1714
1715
                color[3*i] = drand48();
color[3*i + 1] = drand48();
color[3*i + 2] = drand48();
1719
               //Display here
1725
              //Display here
bounding_box();
glutInit (&argc, argv);
glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
glutInitWindowSize (480,480);
1727
1729
              glutInitWindowPosition (100,100);
glutCreateWindow("Del");
1730
1731
              glutDisplayFunc(display);
               glutKeyboardFunc(kbd);
1733
              glutReshapeFunc(reshape);
init();
1735
              glutMainLoop();
               //Clean u
1738
               empty_dll(del);
1739
1740
1741
              free(color);
              return 0;
1743 }
```

Two Dimensional C Code Snippets

```
15 typedef struct Edge {
             int from, to; //2 vertices as integer labels
 16
 17 } Edge;
 18
  19 typedef struct Triangle {
        typeder struct Triangle {
  int vert_1, vert_2, vert_3; //Three vertices of triangle as integer labels
  Edge edge_1, edge_2, edge_3; //Three edges of the triangle
  //adjacent[i] is pointer to the triangle sharing edge_i+1 - NULL if none exist
  struct Triangle* adjacent[3];
  double circum[2]; //Circumcentre of the triangle
  int beared. //Hear the triangle interpretable of the triangle
 20
 23
 25
            int checked; //Has the triangle been checked in step j of Bowyer Watson?
 26 } Triangle;
 28 struct Polygon_2D { //An array of vertices, and a boolean unbounded
 29
            double* v
           int capacity;
          int num_items;
int unbounded;
 31
 33 }:
       //Make a ploygon with capacity cap
Polygon_2D *make_polygon(int cap) {
  Polygon_2D *pg = malloc(sizeof(Polygon_2D));
  if (pg == NULL) {
    fprintf(stderr, "ERROR: malloc failed\n");
    exit(-1);
}
 35
 37
 39
 41
          pg->capacity = cap;
pg->v = malloc(sizeof(double) * pg->capacity);
if (pg->v == NULL) {
   fprintf(stderr, "ERROR: malloc failed\n");
 43
 45
          .printf(s
exit(-1);
}
48 pg->num_items = 0;
49 pg->unbounded = 0;
50 return pg;
51 }
 52
 52

3 //Add point (a1, a2) to polygon *pg
54 void add_to_polygon(double a1, double a2, Polygon_2D *pg) {
55    if((pg->num_items + 2) > pg->capacity) {
56     pg->capacity *= 2;
57    pg->v = realloc(pg->v, sizeof(double) * pg->capacity);
58    if(pg == NULL) {
59         forintf(stderr "FRROR: realloc failed\n");
                 fprintf(stderr, "ERROR: realloc failed\n");
 59
 60
                    exit(-1);
 61
 63 pg->v[pg->num_items++] = a1;
64 pg->v[pg->num_items++] = a2;
65 }
 66
  67 //Calculates the determinant of the 3x3 matrix with rows a,b,c
72 }
 /3
// Forms a 3x3 matrix using the vertices of the triangle and homogenising 1
// And then computes the determinant of this matrix.

double triangle_determinant(Triangle *t) {
 double a[3];

double b[3];
         double b[3];
double c[3];
a[0] = 1;
a[1] = p[2 * t->vert_1];
a[2] = p[2 * t->vert_1 + 1];
b[0] = 1;
b[1] = p[2 * t->vert_2];
b[2] = p[2 * t->vert_2 + 1];
c[0] = 1;
 80
 82
 83
 84
 85
 86
          c[1] = p[2 * t->vert_3];
c[2] = p[2 * t->vert_3 + 1];
return determinant(a, b, c);
 89
 91
 91
92 //Creates a postively oriented triangle with the vertices give
93 Triangle* make_triangle(int vert_1, int vert_2, int vert_3) {
94 Triangle* t = malloc(sizeof(Triangle));
95 if (t == NULL) {
                                                                                                                                       given as parameters
               fprintf(stderr, "ERROR: malloc failed\n");
          exit(-1);
}
 97
          }
t->vert_1 = vert_1;
t->vert_2 = vert_2;
t->vert_3 = vert_3;
double check = triangle_determinant(t);
//check should be greater than 0 is the triangle is counter-clockwise
// procing labels reverses the sign of check - and thus orientation
 99
101
          //check should be greater than 0 is the triangle is counter-clockwise
//reversing labels reverses the sign of check - and thus orientation
if (check < 0) {
   t->vert_2 = vert_3;
   t->vert_3 = vert_2;
}
103
105
107
            else if (check == 0) {
109
            fprintf (stderr,
    "Error: %d, %d, %d are collinear. Tried to make triangle\n",
    t->vert_1, t->vert_2, t->vert_3);
         exit(-1):
113
```

```
t->edge_1.from = t->vert_1;
 115
        t->edge_1.trom = t->vert_1;
t->edge_1.to = t->vert_2;
t->edge_2.from = t->vert_2;
t->edge_2.to = t->vert_3;
t->edge_3.from = t->vert_3;
 116
 119
         t->edge_3.to = t->vert_1;
         t->adjacent[0] = t->adjacent[1] = t->adjacent[2] = NULL;
t->circum[0] = t->circum[1] = 0;
t->checked = -1;
 122
 123
 124
 125
 126
         return t;
127 }
 128
7 / 129 / 130 In the bowyer_watson algorithm we start by using a big triangle which 131 surrounds all of the points in consideration.
132 This big triangle must be removed at the end of the algorithm, so this 133 function checks if Triangle *t shares a vertex with this big triangle - 134 the big triangle has vertices n, n + 1 and n + 2
 int shares_vertex_bigt(Triangle *t, int n) {
        int b = t->vert_1;
if ((b == n) || (b == n + 1) || (b == n + 2))
 138
            return 1;
 140
        b = t->vert_2;
if ((b == n) || (b == n + 1) || (b == n + 2))
  return 1;
 142
 143
 144
         b = t->vert_3;
if ((b == n) || (b == n + 1) || (b == n + 2))
 146
 147
149 return 0;
150 }
 151
 152 //Checks if e1 == e2 (edges are not directional)
153 int equal(Edge e1, Edge e2){
154    if (e1.to == e2.to && e1.from == e2.from)
 155
       return 1;
if (e1.to == e2.from && e1.from == e2.to)
 156
return 1;
158 return 0;
159 }
 160
16i\, //The stucture to hold triangle pointers will be a DLL (Doubly Linked List) 162\, //The functions on the DLL are the same as 3D,
102 //ine functions on the DLL are the same as 3D,
163 //but with triangle pointers instead of tetrahedron pointers.
164 typedef struct DLL_NODE {
165    Triangle *data;
166    struct DLL_NODE *next, *prev;
167 } DLL_NODE;
169 struct DLL{
170 DLL_NODE *first, *last;
 171 };
173 //The code for a push down Edge stack and Triangle pointer Stack 174 //Is left out here, same functions as in the 3D case 175 //Stack is an edge stack 176 typedef struct Stack{
       int top_index;
int capacity;
Edge *item;
 177
 179
 180 } Stack;
 181
 182 typedef struct Triangle_Stack{
int top_index;
int capacity;
Triangle **item;
 186 } Triangle_Stack;
188 //The code for Hilbert sorting follows
189 //rotate/flip a quadrant appropriately
 190
       void rot(int quad, int *x, int *y, int w) {
       int temp;
if (quad == 0) {
  temp = *x;
  *x = *y;
  *y = temp;
}
 191
 192
 193
 194
 195
 196
          else if (quad == 1) {
 197
          *y = *y - w;
 198
 200
          *x = *x - w;
*y = *y - w;
           else if (quad == 2) \{
 201
 202
           else {
 204
            temp = *x;

*x = w - *y - 1;

*y = w * 2 - temp - 1;
 205
 206
          }
 208
 209 }
210
//Converts a 2D integer point (x,y) to a 1D distance, with grid resolution n 212 int xy2d (int n, int x, int y) {
```

```
214
          int max;
int w;
215
216
          int temp;
         int quad;
int rx, ry, d = 0;
if (x >= y) max = x;
else max = y;
r = floor(log(max)/log(2)) + 1;
w = (int)pow(2, r - 1);
if ((n % 2) != (r % 2)) {
  temp = x;
  x = y;
  y = temp;
}
           int quad;
218
219
220
221
222
223
224
225
226
227
          while (r != 0) {
228
239
239 //Crudely converts a double to an int.
241 int to_int(double p) {
242    return (int) ((p + BOX_SIZE) * 100);
243 }
244 //Comparison function to be used to sort the array p
       246
247
248
249
250
251 }
252 /
253 //Calls qsort on an array of indexes. These indexes will sort p.
254 void hilbert_sort(int *indexes) {
255    qsort(indexes, num_points, sizeof(int), cmpfunc);
256 }
257
257
258 //Function to sort the global array p with Hilbert sorting.
259 void sort() {
260   int i;
261   int *indexes;
          int check;
int check;
double max = 0;
double temp;
double *temp_array;
262
 263
264
266
          indexes = malloc(num_points * sizeof(int));
if (indexes == NULL) {
           -_points * sizeof(int));

fprintf(stderr, "ERROR: malloc failed\n");
exit(-1);
}
268
270
271
         for (i = 0; i < num_points; ++i) {
  indexes[i] = i;
  temp = fabs(p[2 * i]);
  if(temp > max) max = temp;
  temp = fabs(p[2 * i + 1]);
  if(temp > max) max = temp;
}
272
274
275
276
277
278
279
280
           max = ceil(max);
          max = cell(max);

BOX_SIZE = (int)max;

GRID_SIZE = 256;

check = BOX_SIZE * 2 * 100;

GRID_SIZE = floor(log(check)/log(2)) + 1;
281
282
283
284
285
286
           hilbert_sort(indexes);
           nilbert_sort(indexes);
temp_array = malloc(2 * (num_points + 3) * sizeof(double));
if (temp_array == NULL) {
   fprintf(stderr, "ERROR: malloc failed\n");
   exit(-1);
287
288
289
290
291
           for(i = 0; i < num_points; ++i) {
  temp_array[2 * i] = p[2 * indexes[i]];
  temp_array[2 * i + 1] = p[2 * indexes[i] + 1];</pre>
292
293
294
295
296
297 free(p);
298 p = temp_array;
299 }
           free(indexes);
// square the double d
302 double sq (double d) {
303 return d * d;
304 }
301 //square the double d
305
306 //Checks if the point (d0,d1) lies inside the positively oriented 307 //triangle *Tri's circumcircle.
308 int in_circle(Triangle *Tri, double d0, double d1) {
309 double a[3], b[3], c[3];
310 a[0] = p[2 * Tri->vert_1] - d0;
311 a[1] = p[2 * Tri->vert_1 + 1] - d1;
```

```
312 a[2] = sq(p[2 * Tri->vert_1] - d0) +
313 sq(p[2 * Tri->vert_1 + 1] - d1);
314
        b[0] = p[2 * Tri->vert_2] - d0;
b[1] = p[2 * Tri->vert_2 + 1] - d1;
b[2] = sq(p[2 * Tri->vert_2] - d0) +
sq(p[2 * Tri->vert_2 + 1] - d1);
316
317
        320
321
322
323
324
325
        if (determinant(a,b,c) <= 0)</pre>
326
        return 0;
else
328
          return 1;
329 }
330
331 //Checks if edge e is shared with a triangle in list.
     //the search starts at node in list, and moves backwards, then does forwards.int shared_edge_in_graph(Edge e, DLL_NODE *node, DLL *list) {
332
334
        DLL_NODE *temp;
        temp = node->prev;
while (temp != NULL) {
   if (equal(e, temp->data->edge_1))
336
337
338
          return 1;
else if (equal(e, temp->data->edge_2))
340
         return 1;
else if (equal(e, temp->data->edge_3))
341
342
           temp = temp->prev;
344
345
346
        temp = node->next;
while (temp != NULL) {
  if (equal(e, temp->data->edge_1))
347
348
349
350
              return 1;
351
          else if (equal(e, temp->data->edge_2))
352
              return 1;
353
        else if (equal(e, temp->data->edge_3))
  return 1;
      temp = temp->next;
}
355
356
357
358 return 0;
359 }
361
     Recursively checks the neighbours of Triangle tri. If a neighbour is bad it is added to DLL bad and checked itself. Otherwise neighbour is marked as checked. At each step, triangles are ignored that a have a checked value equal to run.
363
365
     void check_neighbours(Triangle *tri, int run, DLL *bad) {
   DLL_NODE *node;
   Triangle *nbhr;
367
369
        int i;
        tri->checked = run;
for(i = 0; i < 3; ++i) {
   nbhr = tri->adjacent[i];
   //Check if the neighbour is actually a triangle
   if(nbhr != NULL) {
371
373
375
              //Only check each triangle once
if(nbhr->checked < run) {</pre>
377
                if (in_circle(nbhr, p[2 * run], p[2 * run + 1])) {
   node = find_node(nbhr, del);
380
                    add_to_list(nbhr, bad);
                    remove_node(node, del);
check_neighbours(nbhr, run, bad);
381
383
384
                 else
                    nbhr->checked = run;
385
386
                 }
387
      }
388
389
390 }
391
     //Checks if tri and nbhr match on e, and if so updates tri's adjacency
int find_matching_edge(Triangle *tri, Edge e, Triangle* nbhr) {
392
      if (equal(tri->edge_1, e)) {
   tri->adjacent[0] = nbhr;
394
       return 1;
395
396
       if (equal(tri->edge_2, e)) {
  tri->adjacent[1] = nbhr;
  return 1;
398
400
        if (equal(tri->edge_3, e)) {
  tri->adjacent[2] = nbhr;
402
403
        return 1;
404
        fprintf(stderr, "Found no match for an edge in a triangle\n");
406
407
408 }
```

```
void find_adjacent_triangle_to_edge(Edge e, DLL_NODE *node, int edge_no) {
   DLL_NODE *comp = node->prev;
416
          if (node->data->adjacent[edge_no] == NULL) {
418
            while(comp != NULL) {
   if (equal(e, comp->data->edge_1)) {
      comp->data->adjacent[0] = node->data;
      node->data->adjacent[edge_no] = comp->data;
419
420
421
423
                      break:
424
                   else if (equal(e, comp->data->edge_2)) {
  comp->data->adjacent[1] = node->data;
425
427
                      node->data->adjacent[edge_no] = comp->data;
428
                      break;
429
                   else if (equal(e, comp->data->edge_3)) {
                      comp->data->adjacent[2] = node->data;
node->data->adjacent[edge_no] = comp->data;
431
433
                      break;
               comp = comp->prev;
435
436
           }
±37 }
438 }
      //Finds all adjacencies moving backwards in a list starting at start void find_adjacent(DLL_NODE *start) { }
440
441
         Edge edge;
DLL_NODE *node;
443
444
         node = start;
while (node != NULL) {
445
            //check edge 1
edge = node->data->edge_1;
find_adjacent_triangle_to_edge(edge, node, 0);
//check edge 2
446
447
448
449
            450
451
452
            //check edge 3
edge = node->data->edge_3;
453
            find_adjacent_triangle_to_edge(edge, node, 2);
node = node->prev;
454
455
        }
456
457 }
458
      //Make all triangles which tri points to, point to NULL instead of back to tri
      //Make all triangles which tri points to, point to
void delete_ties(Triangle *tri) {
   int i, j;
   for(i = 0; i < 3; ++i) {
      if(tri->adjacent[i] != NULL) {
        for(j = 0; j < 3; ++j) {
        if(tri->adjacent[i]->adjacent[j] == tri) {
            tri->adjacent[i]->adjacent[j] = NULL;
            break:
460
462
464
                 break;
}
466
468
469
              }
471 }
472 }
      //This algorithm produces the Delaunay triangulation of our points
474
      void bowyer_watson() {
476
         int i:
          Edge edge;
         int shared_edge;
int found_bad;
478
479
         Triangle *tri_1;
Triangle *tri_2;
DLL *bad = make_list();
480
481
482
483
         DLL_NODE *node;
DLL_NODE *temp;
484
         Stack *polygon = make_stack();
Triangle_Stack *border_triangles = make_tri_stack();
485
486
487
          //Add big triangle vertices to array of points
488
        //Add big triangle vertices to a p[2 * num_points] = -100000; p[2 * num_points + 1] = -100000; p[2 * num_points + 2] = 100000; p[2 * num_points + 3] = -100000; p[2 * num_points + 4] = 0; p[2 * num_points + 5] = 100000;
489
490
491
493
495
          Triangle *big_tri = make_triangle(num_points, num_points + 1, num_points + 2);
         add_to_list (big_tri, del);
for (i = 0; i < num_points; ++i) {
  empty_dll(bad);
  node = del->first;
  found_bad = 0;
497
499
501
            while(!found_bad) { //Find one bad triangle
  if (node == NULL) {
503
                   fprintf(stderr, "ERROR: Arithmetic error - found no bad triangle\n");
505
                   exit(-1):
506
               if (in_circle(node->data, p[2 * i], p[2 * i + 1])) {
   add_to_list(node->data, bad);
   remove_node(node, del);
507
509
```

```
510
              found_bad = 1;
511
512
              else {
                node = node->next;
514
515
           check_neighbours(bad->first->data, i, bad); //Find all bad triangles
516
           node = bad->first;
while(node != NULL) {
   //check edge 1
518
519
520
              edge = node->data->edge_1;
              shared_edge = shared_edge_in_graph(edge, node, bad);
521
522
              if(!shared_edge) {
                push(edge, polygon);
push_tri(node->data->adjacent[0], border_triangles);
523
524
              //check edge 2
edge = node->data->edge_2;
526
              shared_edge = shared_edge_in_graph(edge, node, bad);
if(!shared_edge) {
528
                push(edge, polygon);
push_tri(node->data->adjacent[1], border_triangles);
530
              //check edge 3
              edge = node->data->edge_3;
              shared_edge = shared_edge_in_graph(edge, node, bad);
              if(!shared_edge) {
  push(edge, polygon);
  push_tri(node->data->adjacent[2], border_triangles);
536
538
539
              node = node->next;
540
           //Find the Delaunay cavity of the input point.
//The first run of our while loop is slighty different, so is separate
542
543
544
           edge = top(polvgon):
           edge = top(polygon);
add_to_list(make_triangle(edge.from, edge.to, i), del);
node = del->first; //The different line - marks where new triangles start
tri_2 = top_tri(border_triangles);
if (tri_2 != NULL) {
    tri_1 = del->first->data;
    find_matching_edge(tri_1, edge, tri_2);
    find_matching_edge(tri_2, edge, tri_1);
}
545
546
547
548
549
551
552
           pop_tri(border_triangles);
553
           pop(polygon);
           while (!is_empty_stack (polygon)) {
556
              edge = top(polygon);
add_to_list(make_triangle(edge.from, edge.to, i), del);
557
              tri_2 = top_tri(border_triangles);
if (tri_2 != NULL) {
  tri_1 = del->first->data;
559
561
                 find_matching_edge(tri_1, edge, tri_2);
563
                find_matching_edge(tri_2, edge, tri_1);
              pop_tri(border_triangles);
565
          pop(polygon);
567
568
           //Fill in adjacencies for newly added triangles.
569
           find_adjacent(node);
571
        node = del->first:
        while (node != NULL) { //Remove ties with the super triangle if (shares_vertex_bigt(node->data, num_points) == 1) {
573
             temp = node;
node = node->next;
              delete_ties(temp->data);
free(temp->data);
577
578
              remove_node(temp, del);
579
580
          else {
             node = node->next;
581
582
          }
583
        //Clean up
empty_dll(bad);
584
585
        free(bad);
free_stack(polygon);
free_tri_stack(border_triangles);
586
588
589 }
590
591 //Finds the circumcentre of triangle pointed to by t and stores it in result
//slight complication for slope 0 lines:
if(y1 == y2) {
  temp = y2;
  y2 = y3;
  y3 = temp;
  temp = x2;
  x2 = x3;
602
604
605
606
608
```

```
609 x3 = temp;
610 }
       else if(y3 == y2) {
        temp = y2;
y2 = y1;
y1 = temp;
612
613
     y1 = temp;
temp = x2;
x2 = x1;
x1 = temp;
}
614
616
617
618
619
      mid_x1 = (x1 + x2) / 2;
mid_x2 = (x2 + x3) / 2;
mid_y1 = (y1 + y2) / 2;
mid_y2 = (y2 + y3) / 2;
620
621
622
623
624
       slope_1 = (x2 - x1) / (y1 - y2);
slope_2 = (x2 - x3) / (y3 - y2);
625
626
627
       629
631 }
633 //finds a point on the line ab in the direction ab and stores in r.
634 void point_on_line(double a1, double a2, double b1, double b2, double *r) {
     void point_on_line(double a1, double a2, double b1,
double min;
double d, e;
d = (fabs(b1 - a1) == 0) ? 10000 : fabs(b1 - a1);
e = (fabs(b2 - a2) == 0) ? 10000 : fabs(b2 - a2);
min = d < e ? d : e;
r[0] = (b1 - a1) * (25 / min) + a1;
r[1] = (b2 - a2) * (25 / min) + a2;</pre>
635
637
638
639
641
642 }
643
643 //Stores the midpoint of Edge in e in array midpoint
645 void midpoint(double *midpoint, Edge e) {
646 midpoint[0] = (p[2 * e.from] + p[2 * e.to]) / 2;
647 midpoint[1] = (p[2 * e.from + 1] + p[2 * e.to + 1]) / 2;
648 }
649
    650
651
652
653
      double a[3], b[3], c[3];
a[0] = 1; a[1] = a_1; a[2] = a_2;
b[0] = 1; b[1] = b_1; b[2] = b_2;
c[0] = 1; c[1] = c_1; c[2] = c_2;
654
655
656
      if (determinant(a,b,c) > 0) return 1;
else return 0;
658
666
    void point_on_bisector(Edge e, double *temp, double *cc) {
  double slope;
667
         668
          Three cases, in order:
         670
671
672
       674
675
676
677
       else if (p[2 * e.from + 1] == p[2 * e.to + 1]) {
  temp[0] = cc[0];
  temp[1] = cc[1] + 2;
678
679
680
681
682
       else {
        683
684
685
686
687
                        slope * (temp[0] - cc[0]);
688
689
       //Makes sure the point lies on the correct side of edge e
690
       691
692
693
      }
695
696 }
697
     //Finds an unbounded vertice corresponding to an unbounded edge
//formed by edge e in Triangle t, storing in r.
void compute_unbounded_vertice(Edge e, Triangle t, Polygon_2D *pg) {
699
     double temp[2];
double cc[2];
701
703
       midpoint(temp, e);
       cc[0] = t.circum[0];
cc[1] = t.circum[1];
705
```

```
708 Three cases, in order:
          1. circumcentre lies on the edge e of triangle.
2. circumcentre outside of triangle.
709
710
                circumcentre inside triangle.
713
          if ((fabs(temp[0] - cc[0]) < 1e-7) && (fabs(temp[1] - cc[1]) < 1e-7)) {
                point_on_bisector(e, temp, cc);
          else if (is_counterclock (p[2 * e.from], p[2 * e.from + 1], p[2 * e.to], p[2 * e.to + 1], cc[0], cc[1])) {

//reflect circumcentre about midpoint
718
719
720
             point_on_line(cc[0], cc[1], temp[0], temp[1], temp);
721
722
              //reflect midpoint about circumcentre
724
            point_on_line(temp[0], temp[1], cc[0], cc[1], temp);
726
          add_to_polygon(temp[0], temp[1], pg);
728
      //finds the edges in *t that have v as a vertice, storing in r void edges_with_vert(int v, Triangle *t, int *r) {
730
         oid edges_with_vert(int v, Triangle *t, int *r) {
  int count = 0;
  if((t->edge_1.from == v) || (t->edge_1.to == v)) r[count++] = 0;
  if((t->edge_2.from == v) || (t->edge_2.to == v)) r[count++] = 1;
  if((t->edge_3.from == v) || (t->edge_3.to == v)) r[count++] = 2;
734
736
737 //Copies pg1 into pg2, in reverse order of points.
738 void copy_pg_reverse(Polygon_2D *pg1, Polygon_2D *pg2) {
       int i;
for(i = ((pg1->num_items / 2) - 1); i >= 0; --i) {
   add_to_polygon(pg1->v[2 * i], pg1->v[2 * i + 1], pg2);
742
743 }
745 //Copies pg1 into pg2
746 void copy_pg(Polygon_2D *pg1, Polygon_2D *pg2) {
          int i;
for(i = 0; i < (pg1->num_items/ 2); ++i) {
         add_to_polygon(pg1->v[2 * i], pg1->v[2 * i + 1], pg2);
}
749
751 }
//Computes the Voronoi region for v a vertice of triangle *start, storing in *pg
754 void voronoi_face(Triangle *start, int v, Polygon_2D *pg, Polygon_2D *temp_pg) {
755 Triangle *current, *prev, *next;
756 //Will hold the indexes of the edges that share a particular vetice
          int edges[2], start_edges[2];
int i = 0;
int done = 0;
757
759
          Edge e;
761
          if(start == NULL) {
  fprintf(stderr, "ERROR: started with NULL triangle\n");
763
            exit(-1);
765
          temp_pg->num_items = 0;
          cemp_pg - num__tcems = 0;
add_to_polygon(start->circum[0], start->circum[1], temp_pg);
edges_with_vert(v, start, start_edges);
while((i < 2) && !done) {//i == 0 first direction, i == 1 second direction
    prev = start;</pre>
767
769
770
771
              if(start->adjacent[start_edges[i]] != NULL) {
    next = start->adjacent[start_edges[i]];
    while(next != start) {//Not returned to starting point
772
773
774
775
                     current = next;
if(i == 1) add_to_polygon(current->circum[0], current->circum[1], pg);
                     else add_to_polygon(current->circum[0], current->circum[1], temp_pg);
                    else add_to_polygon(current->circum[0], current->circum[1]
edges_with_vert(v, current, edges);
if(current->adjacent[edges[0]] != prev) {
   if(current->adjacent[edges[0]] == NULL) {
     if(edges[0] == 0) e = current->edge_1;
     else if(edges[0] == 1) e = current->edge_2;
     else e = current->edge_3;
     if(i == 1) compute_unbounded_vertice(e, *current, pg);
else f
779
781
782
783
                           compute_unbounded_vertice(e, *current, temp_pg);
copy_pg_reverse(temp_pg, pg);
}
784
786
787
                           pg->unbounded = 1;
788
                           break;
790
                        next = current->adjacent[edges[0]];
                       prev = current;
792
794
                     else if(current->adjacent[edges[1]] == prev) {
  fprintf(stderr, "ERROR: incorrect adjacancy\n");
796
                        exit(-1):
798
                     else {
                       if(current->adjacent[edges[1]] == NULL) {
                           if(edges[1] == 0) e = current->edge_1;
else if(edges[1] == 1) e = current->edge_2;
else e = current->edge_3;
800
802
803
                            if(i == 1) compute_unbounded_vertice(e, *current, pg);
                            else {
804
                                compute_unbounded_vertice(e, *current, temp_pg);
806
                               copy_pg_reverse(temp_pg, pg);
```

```
pg->unbounded = 1;
break;
808
809
810
811
                     next = current->adjacent[edges[1]];
                    prev = current;
812
                 }
814
               if(next == start) done = 1;
815
816
817
              if(start_edges[i] == 0) e = start->edge_1;
else if(start_edges[i] == 1) e = start->edge_2;
else e = start->edge_3;
if(i == 1) {
818
819
820
821
                 compute_unbounded_vertice(e, *start, pg);
823
824
               compute_unbounded_vertice(e, *start, temp_pg);
copy_pg_reverse(temp_pg, pg);
825
827
         pg->unbounded = 1;
829
           ++i;
831
832
       if(done) copy_pg(temp_pg, pg);
833 }
     //Produces the voronoi diagram for our points. \mbox{\sc void} \mbox{\sc voronoi()} {
835
836
      Triangle *t;
DLL_NODE *node;
837
         int count = 0:
839
        double temp[2];
//Will hold if a vertice is done.
int *done = calloc(num_points, sizeof(int));
840
841
842
        Polygon_2D *temp_pg = make_polygon(3000);
843
844
       voro = malloc(num_points * sizeof(Polygon_2D:
if (voro == NULL) {
    fprintf(stderr, "ERROR: malloc failed\n");
    exit(-1);
}
845
         voro = malloc(num_points * sizeof(Polygon_2D*));
846
847
848
849
850
        node = del->first;
while (node != NULL) {
  circumcentre(temp, node->data);
  node->data->circum[0] = temp[0];
  node->data->circum[1] = temp[1];
851
852
853
854
       node = node->next;
}
856
857
858
         node = del->first;
         while(node != NULL) {
  t = node->data;
  if(!done[t->vert_1]) {
860
862
              voro[count] = make_polygon(30);
voronoi_face(t, t->vert_1, voro[count], temp_pg);
done[t->vert_1] = 1;
864
865
866
              ++count;
867
          if(!done[t->vert_2]) {
868
             voro[count] = make_polygon(30);
voronoi_face(t, t->vert_2, voro[count], temp_pg);
done[t->vert_2] = 1;
869
870
872
              ++count:
873
874
           if(!done[t->vert_3]) {
              voro[count] = make_polygon(30);
voronoi_face(t, t->vert_3, voro[count], temp_pg);
done[t->vert_3] = 1;
875
876
877
878
               ++count;
879
          if(count == num_points) break;
node = node->next;
880
881
882
883
        free(temp_pg);
884 }
885
886 //Drawing routines left out here, similar to 3D case.
887
888 //read_points and randomise left out here, just assume that p holds input
889 //Point set and num_p holds the number of points in p.
891 //Does memory allocation of global arrays and calls fucntions
892 int main() {
893 //Hilbert sorting of the array p
        sort();
895
       //Computing the Delauany triangulation
del = make_list();
897
        bowyer_watson();
899
         //Computing the Voronoi diagram
901
         voronoi();
903 }
```