Creating Voronoi Diagrams Using Delaunay
Tetrahedralisations
Trinity College Dublin

9= § Trinity
5:*|r:a College
G& ' Dublin

The University of Dublin

Sean Martin

March 20, 2017

Abstract

A method for computing and visually displaying the Voronoi diagram and
Delaunay triangulation of point sets is presented in two and three dimensions,
and supplemented by C code. Firstly the Bowyer Watson algorithm is im-
plemented to produce the Delaunay triangulation and the Voronoi diagram is
extracted from this. This project begins by defining the relevant geometrical
notions, then moves on to discussion of the algorithms and data structures
that are used, ending with results, applications and C code.



Declaration

This thesis is my own work except where due citations are given. I have read and
I understand the plagiarism provisions in the General Regulations of the University
Calendar for the current year, found at http://www.tcd.ie/calendar.

I have also completed the Online Tutorial on avoiding plagiarism ‘Ready Steady
Write’, located at http://tced-ie.libguides.com/plagiarism /ready-steady-write.

Acknowledgements

Many thanks to my supervisor, Prof. Colm O Dunlaing for all the help and guidance
with this project, I'm not sure where I would have even started without him. A
former TCD student, Andrew Farrell produced a thesis with Prof. o) Dtunlaing
which I found very useful, but ultimately does not appear anywhere in this document
[Far95]. Finally, thanks to family and friends for dealing with exclamations of “Why
won’t this work!” and “I just don’t understand!”.

Contents
Introduction 4
1 Definitions 5
1.1 Triangulations of Point Sets . . . . . . . .. ... ... ... ... .. )
1.2 Convex Polytopes . . . . . . . . . .. 6
1.3 Delaunay Triangulations . . . . . . . . . ... .. .. ... ... .. 7
1.4 Voronoi Diagrams . . . . . . . . . ... 0 o 7
1.5 Describing Duality . . . . .. .. .. ... oo 7
2 Bowyer Watson Algorithm 8
2.1 Algorithm Description . . . . . . . . .. ... ... ... 8
2.2 Degeneracies . . . . . . ... e 9
2.3 Correctness . . . . . . ... 10
3 Voronoi Diagram Construction 12
3.1 Two Dimensions: Pseudocode . . . . . . . ... ... ... .. .... 12
3.2 Obtaining a Voronoi Region . . . . .. ... ... ... .. .. .... 13
3.3 Unbounded Voronoi Edges . . . . . .. ... ... ... ... ... 13
3.4 Three Dimension Specifics . . . . . . . . ... ... ... ... 13
4 Important Formulae 15
4.1 Orientation Check . . . . . . . ... .. ... .. ... . ..., 15
4.2 Empty Circle Check . . . . .. ... .. 16
4.3 Circumcentre Calculation . . . . . . .. ... ... ... .. ..... 17
5 Data Structures and Efficiency 18
5.1 Data Structures . . . . . . . ... L 18
5.2 Keeping Track of Adjacencies . . . . .. ... ... .. ... ..... 20
5.3 Hilbert Curve . . . . . . . . .. 20



5.4 Time savings . . ... .. ..

6 Results and Applications

6.1 Results in Two Dimensions . .

6.2 Results in Three Dimensions

6.3 Applications . . . . . .. ...

7 Problems and Conclusion

7.1 Implementation Flaws . . . .
7.2 Problems Encountered . . . .
7.3 Conclusion . . . . .. ... ..

Bibliography

Appendix: Code

Short Header File . . . . . . . . ..
Three Dimensional C Code . . . .

Two Dimensional C Code Snippets

24
24
28
30

31
31
31
32

32



Introduction

Delaunay triangulations and Voronoi diagrams were theorised in reverse order to how
we shall use them. The origin of the Voronoi diagram dates back to the 17*" century
with illustrations in René Descartes’ Principia philosophiae resembling the modern
Voronoi Diagram [Des44] (See pg. 78). The following historical account is from
Klein and Aurenhammer [AK00]. They explain how Descartes’ illustrations show
a decomposition of space into convex regions, each consisting of matter revolving
around one of the fixed stars.

Figure 1: Extracted from [Des44|. Descartes’ decomposition of space - for example
the bounded convex polygon surrounding the vertex f resembles a Voronoi region.

Although Descartes did not formally define the Voronoi diagram, he certainly lay
the foundations for Dirichlet and Voronoi to formally introduce the concept. Hence
the alternative name Dirichlet tesselation. Voronoi himself was the first to consider
the dual of the Voronoi Diagram, where any two points whose Voronoi regions have
boundary in common are connected by an edge. Delaunay later defined the Delaunay
triangulation, and found it to be the same as the dual of the Voronoi Diagram. We
will be going in the opposite direction; using the Delaunay triangulation to compute
its dual, the Voronoi Diagram.

Both the Voronoi diagram and Delaunay triangulation of point sets have widespread
applications (as do more general versions, which deal with convex ‘sites’ - instead of
points [H()DYO?], or perhaps have fuzzy edges). For example, the Voronoi diagram
has applications in natural growth models, city planning, organic texture generation,
and geostatistics. Furthermore, much research has been devoted to their study, and
much literature on the topic is very recent. For those who would be interested in

4



further reading, or perhaps improving this implementation, I would highly recom-
mend referring to [LS05] which breaks down five different implementations of 3D
Delaunay triangulation. Another option is somewhat older but, [GS85] presents a
very interesting Quad-Edge data structure, and computes Delaunay triangulations
using subdivisions of manifolds.

Before we begin, let us make one note about terminology. We shall use the
term Delaunay triangulation as a general term for cases with points in R? and the
term Delaunay tetrahedralisation to refer spefically to the case with points in R3.
Generally speaking, the 2D case will be discussed as it is easier to visualise and is
readily adapted to 3D.

The general structure of this project will be as follows. We define the Delaunay
triangulation and Voronoi diagram and how they are dual. Next we move on to
the Bowyer Watson algorithm, its correctness and how the Voronoi diagram is ex-
tracted from this. Finally we discuss improving the efficiency of the implementation,
shortcomings of the implementation and results.

1 Definitions

1.1 Triangulations of Point Sets

Most definitions will be given in d dimensions, even though the code will deal with
only two and three dimensions. This is because the Boywer Watson algorithm works
in higher than three dimensions, and so the Voronoi diagram can be extracted as
the dual in higher than three dimensions. Furthermore, we avoid having to define
terms in two and three dimensions separately.

Definition 1.1. The convez hull of a point set A C R? is the smallest convex set
that contains A, and is denoted H(A). A convex set in R is a set of points such
that given any pair of points in the set, the straight line segment joining the pair of
points is fully contained in the set. See Figure 2.

Definition 1.2. Points xy,...,z, € R? are affinely independent if any linear com-
bination \jz; + -+ Az, = 0 with Ay +---4+ X, = 0 must have \; =--- =\, = 0.

Definition 1.3. A k-simplex is the convex hull of k£ + 1 affinely independent points
in R?. These points are referred to as the vertices of the simplex.

From the definitions, R? can contain at most a d-simplex. When we create
programs, we shall be dealing with R? and R? so the biggest simplex we shall see is
a 3-simplex, namely a tetrahedron.

Definition 1.4. Let o and 7 be simplices in R?, with vertices A and B respectively.
Then we say that 7 is a face of o if B C A. If 7 is a k-simplex we say it is a k-face
of 0.

Definition 1.5. A finite collection K of simplices in R? is said to be a simplicial
complex if the following two conditions are satisfied:

1. If o belongs to K then every face of o belongs to K.

2. If 0 and 7 belong to K then either ¢ and 7 are disjoint faces, or they intersect
along a common face of ¢ and 7.



If the biggest simplex in K is a k-simplex, then K is said to be a simplicial k-complex.

Definition 1.6. We shall use a slightly modified definition from De Loera et Al
[LRS10]. A triangulation of a point set A € R is a simplicial d-complex K with
vertices A such that the union of all d-simplices in K is H(A). See Figure 3.

Figure 2: Convex Hull of 8 points Figure 3: Triangulation of 8 points

1.2 Convex Polytopes
The following definitions are from Matousek [Mat02].

Definition 1.7. A hyperplane in R? is a set of the form {x € R : a-x = b}
with @ € R% a # 0 and b € R. A closed half-space in R? is a set of the form
{r € RY: a-x > b}, with a and b as above. Note that z - y denotes the regular
algebraic dot product, zy; + x2ys + - - - + x,y, for z,y € R™.

Remark. From the above definitions, it is clear that a hyperplane forms the boundary
of a closed half-space. Thus a hyperplane in R? determines two closed half-spaces
and the union of these half-spaces is R%.

Definition 1.8. A convez polytope P in R? is the intersection of finitely many closed
half-spaces in R%. P is called an n-polytope if it has affine dimension n.

Definition 1.9. A face of a convex d-polytope P is defined as either

1. P itself.

2. PN h # @, where h is a hyperplane such that P is fully contained in one of
the closed half-spaces determined by h.

A face will be a convex polytope. If a face of P is an n-polytope, then it is called
an n-face of P. By definition P has faces of dimension 0, 1,...,d where O-faces are
vertices.

As an example, a regular hexagon is a bounded convex 2-polytope (or simply a
polygon) with

e One 2-face, the hexagon itself.
e Six 1-faces, the edges of the hexagon.

e Six (-faces, the vertices of the hexagon.

6



1.3 Delaunay Triangulations

Some authors would take the following to be a theorem, for example [DO11], but
we shall take it to be a definition:

Definition 1.10. A Delaunay triangulation DT(A) of a point set A C R? is a
triangulation of A such that no point of A lies inside the circumcircle of a triangle
in DT(A). A triangle having no points in the interior of its circumcircle is often
referred to as having the empty circle property.

We can generalise the above definition to a point set A C R?. But first we need
the notion of a d-dimensional disc, or d-disc.

Definition 1.11. A d-dimensional open disc, or simply an open d-disc, of radius r
and centre c is the set of points

{z € R": d(x,c) < r} where d(z, ) is the Euclidean distance between z and c.

Remark. Since d-simplices consist of d 4+ 1 vertices, the vertices of a d-simplex o
define an open d-disc such that the boundary of the disc passes through all the
vertices of . The boundary of this open d-disc is a (d — 1)-hypersphere which
circumscribes o.

Definition 1.12. A Delaunay triangulation DT(A) of a point set A C R? is a
triangulation of A such that no point of A lies in an open d-disc whose boundary
circumscribes a d-simplex in DT(A).

1.4 Voronoi Diagrams

We will use a slightly modified and generalised definition from Liebling and Pournin
[LP12].

Definition 1.13. Consider a point set A C R%. The Voronoi region R, associated
with the point x in A is a possibly unbounded convex d-polytope which consists
of those points in R? whose distance to z is not greater than their distance to any
other point of A.

Definition 1.14. The Voronoi diagram V(A) induced by A is a decomposition of
R? into the Voronoi regions associated with the points of A. V(A) will often be
referred to as the Voronoi diagram of A.

Remark. Notice that a Delaunay triangulation of a point set A is not always unique,
while the Voronoi diagram of a point set A is unique.

1.5 Describing Duality

A vertex in the Voronoi diagram or Delaunay triangulation will be called a Voronoi
vertex or Delaunay vertex, respectively, and similarly for other geometrical struc-
tures. Given a point set A C R? the duality between V(A) and DT(A) is the
following. Each n-face of a Voronoi d-polytope (Voronoi region) corresponds to
one and only one d — n face of a Delaunay d-simplex (Delaunay triangle). We will
explicitly describe this duality in two and three dimensions.

7



In two dimensions, each Voronoi vertex corresponds to a Delaunay triangle, each
Voronoi edge corresponds to a Delaunay edge, and each Voronoi polygon corresponds
to a Delaunay vertex. An edge in V(A) is always a line segment or a ray of the
perpendicular bisector of its corresponding Delaunay edge.

In three dimsensions there is an informative picture from [Led07] which demon-
strates the situation well. Figure 4 shows, in order:

B> Ad

(a) (b) (c) (d)

Figure 4: From [Led07], demonstrating the duality in 3D between V(A) and DT'(A).

(a) A Delaunay vertex p corresponds to a Voronoi Polyhedron (Voronoi region).
(b) A Delaunay edge « corresponds to a Voronoi face.
(¢) A Delaunay face k corresponds to a Voronoi edge.

)

(d) A Delaunay tetrahedron 7 corresponds to a Voronoi vertex.

2 Bowyer Watson Algorithm

There are many algorithms to compute the Voronoi diagram directly for a point set
in 2D, and many algorithms which first compute the Delaunay triangulation and
then the Voronoi diagram from this in 2D. However many of these algorithms do
not generalise to higher dimensions. As such we will follow the algorithm presented
independently by both Bowyer and Watson, which functions in n-dimensions [Wat81]
[Bow81].

2.1 Algorithm Description

The Bowyer Watson algorithm gives an incremental method of producing the De-
launay triangulation of point sets A C R™. To quote [LS05], which compared five
Delaunay tetrahedrilisation programs, “Each of the five programs compute the De-
launay tessellation incrementally, adding one point at a time”. I believe incremental
construction of Delaunay triangulations and tetrahedrilisations is commonplace be-
cause it is fast and easy to understand. We shall give a very basic implementation
of the Boywer Watson algorithm in pseudo code, and later discuss how we develop
a more sophisticated implementation. The pseudo code given here will be for the
2D case, but it generalises readily.

Remark. In the following sections we will call triangles ‘bad’, or ‘good’. A triangle
becomes bad if it no longer satisfies the empty circle property after a new point of
A is added, and good otherwise.



1
2
3

23
24

//Data: Input point set A, two empty sets of triangles Del and Bad and a polygon P
//Result: Del will be a Delaunay triangulation of A
Triangle_set bowyer_watson(Point_set A) {

Polygon P; Triangle_set Bad;

create a super triangle which contains all points of A and add it to Del;
for (each point x in A) {
empty Bad; //Clear the set of bad triangles
for (each triangle T in Del) { //Find the new bad triangles
if (x lies inside the circumcircle of T) {
add T to Bad and remove T from Del;
3
}
for (each triangle T in Bad) { //Find the boundary of the bad triangles
if (an edge of T is not shared by another triangle in Bad) {
add that edge to P;
}
}
for (each edge e of P) { //Retriangulate inside P
form a new triangle by joining e to x and add this triangle to Del;
}
}
Remove all triangles which share a vertex with the super triangle from Del;
return Del;
3

Remark. To generalise this algorithm from two dimensions to n-dimensions, replace
all instances of the word triangle with n-simplex, edge with n — 1 face, the polygonal
convex set P with an n-polytope and the circumcircle of a triangle with the (n —1)-
hypersphere circumscribing an n-simplex. So in three dimensions we have triangles
replaced by tetrahedrons, edges replaced by polygons, polygonal convex sets replaced
by polyhedrons, and the circumcircle of a triangle replaced by the circumsphere of
a tetrahedron.

In Figure 5 we present an example of the Bowyer Watson algorithm simulated
on five points in R?. At each step after (a), the new Delaunay edges are shown in
blue. Notice that at each step, we add at most two triangles to the triangulation,
which is a general result in two dimensions.

Removing all the triangles from the triangulation which share a vertex with the
original ’super’ triangle gives the Delaunay triangulation of the five points (Figure
6).

2.2 Degeneracies

Let A C R% DT(A) does not exist if all points of A are collinear. If four or
more points in A lie on the same circle, then DT(A) will not be unique. We shall
not concern ourselves with the first case, and so we move on to notion of general
position. In the second case, it will be a goal of ours to show that we still get the
correct Voronoi Diagram no matter which Delaunay triangulation of A we choose.

Definition 2.1. Every author’s definition of general position will change depending
on their needs. In our case we say that a point set A C R? is not in general position
if two points in A are non-distinct, or if all points in A lie on a hyperplane in R
That is, in 2D and 3D, collinear and coplanar point sets are respectively not in
general postion.

Theorem 2.1. Given a point set A C R4, with |A| > d + 1 lying on a (d — 1)-
hypersphere, a Delaunay triangulation of A is non-unique. However, each of these
Delaunay triangulations produces the same Voronoi Diagram as their dual.



(d) Insert third point (e) Insert fourth point (f) Insert fifth point

Figure 5: Every step of the Boywer Watson algorithm in our example, bar the last.

Figure 6: Delaunay triangulation of the five points.

Proof. Since every d-simplex in a Delaunay triangulation DT'(A) shares the same
circumcentre, we have no Voronoi edges between any simplices in DT'(A). Thus
every Voronoi edge is defined by the shared circumcentre of the d-simplices and all
the d—1 faces of H(A). However, any choice of a Delaunay triangulation of A covers
H(A) by definition. Thus each Delaunay triangulation produces the same Voronoi
edges, and thus the same Voronoi diagram. O]

2.3 Correctness

We shall prove the correctness of the Bowyer Watson algorithm for a point set
A C R2% The argument for higher dimensions is given by Watson in [Wat81], but it
is nice to visualise the two dimensional case.

Definition 2.2. Two distinct triangles are called neighbours if they share an edge.
A set of triangles C' is said to be strongly connected if |C| = 1, or given any two
distinct triangles T,,T, € C' we can find a sequence oy, 09, ..., 0, of triangles in C'
with T, = 01,1, = 0} where o; and 0,1 are neighbours for ¢« = 1,2,...,k — 1 and
disconnected otherwise. A strongly connected set of triangles C' is said to connect
triangle T, to triangle T, if T,, and T} are not in C, but both have neighbours in C'.

Definition 2.3. A point x lies in the interior of a Delaunay triangulation of A if x
lies inside H(A), the convex hull of A.

10



Definition 2.4. Consider a Delaunay triangulation of A, DT(A). The Delaunay
cavity DC(x) of a point x is the set of bad triangles formed by inserting x into
DT(A). See Figure 7.

(a) The Delaunay cavity (b) The boundary of the cavity

Figure 7: The Delaunay cavity and the boundary of the cavity, for the last point in
the example covered in Figure 5, subfigure 5f.

Lemma 2.2. Given DT (A), the Delaunay cavity DC(x) of a point x which lies in
the interior of DT(A) is always strongly connected and non-empty.

Proof. Choose a triangle T in DT(A) such that x is contained inside 7', or on the
border of T'. We are guaranteed that T exists becuase we insert x into the interior of
DT(A). T is then a bad triangle, and so DC(x) is non-empty as required. Assume
that there exists some triangle B € DC/(x) that is not a neighbour of 7" and is
impossible to connect to 7" using triangles from DC(z). Then any C C DT(A)
which connects B to T' must contain a triangle T/, ¢ DC(x). Then the circumcircle
of B must contain a vertex belonging to at least one of these triangles T/, that is
not a vertex of B, otherwise it could not contain x. Thus we did not start with a
Delaunay triangulation, a contradiction. O]

Definition 2.5. A set S C R” is called star-shaped if there exists p € S such that
the line segment px lies in S for all x € S. The kernel of a star-shaped set S is the
set {pe S:pxrC S, Ve S}

Lemma 2.3. Given DT (A), the union of the triangles in the Delaunay cavity DC(z)
of a point x which lies in the interior of DT(A) forms a star-shaped set with x in
its kernel.

Most papers on the topic of vertex deletion from Delaunay triangulations state
that the Delaunay cavity is star-shaped, but very few papers actually prove this.
See [Buc+13] for example, which also gives different methods of re-triangulating the
Delaunay cavity than the one presented in this paper. The result makes sense, but
unfortunately we shall be no different and will not provide a proof. The idea is
that there is at least one triangle 7" in DC/(x) such that T is star-shaped with z
in its kernel. Then any other triangle in DC(x) is fully reachable from = € T by
line segments that pass through triangles in DC'(x) which are connected to 7" so the
union of triangles in DC(z) is star-shaped. This is as every triangle in DC'(x) must
contain x in its circumcircle and no other points of A. The basis of our proof of
correctness of the Bowyer Watson algorithm comes from Watson [Wat81]:

11



1
2
3
4
5
6
7
8
9

10
11
12

Theorem 2.4. Given a correct Delaunay triangulation DT (A) for a set A of n—1
points, adding one point x to the interior of DT (A) and retriangulating as outlined
in Bowyer Watson algorithm gives a correct Delaunay triangulation of the n points.

Proof. By the above lemma, the Delaunay cavity formed when adding z into DT'(A)
is strongly connected, non-empty and the union of the triangles in the cavity form
a star-shaped set. As such we can find the polygonal boundary of DC(z). Only the
edges that form this polygonal boundary will form the new triangles with z as any
other triangle formed inside the boundary would overlap with a triangle formed by
the edges on the boundary. Thus the retriangulation does form a triangulation of
the n points, we must verify that it is still Delaunay.

By an argument of symmetry, if any of these new triangles were to contain a point
of A in its circumcircle, then there would also be some triangle in DT'(A) that has
not been removed containing x in its circumcircle. This is impossible as we begin
by removing all triangles from DT(A) which contain z in their circumcircle. Thus
every triangle in the triangulation of the n points satisfies the empty circle property,
and we thus obtain a Delaunay triangulation of the n points. O]

Theorem 2.5. The Bowyer Watson algorithm on a point set A C R? produces a
Delaunay triangulation of A.

Proof. Correctness of the Bowyer Watson algorithm on a point set A follows almost
directly from Theorem 2.4. We begin the algorithm by creating a super triangle,
which is certainly the Delaunay triangulation of 3 points - the vertices of the super
triangle. Since the super triangle surrounds A, we will always insert new points into
the interior of the current triangulation. Proceeding inductively, by Theorem 2.4,
we will have a Delaunay triangulation after each point insertion. If A contains n
points, then before we remove the super triangle from the triangulation, we will have
the Delaunay triangulation of n + 3 points. It is easy to observe that the Delaunay
triangulation of AU B gives the Delaunay triangulation of A when all triangles with
vertices in B are removed. Thus, removing the all triangles from the triangulation

which share vertices with the super triangle leaves the Delaunay triangulation of
A. ]

3 Voronoi Diagram Construction

3.1 Two Dimensions: Pseudocode

The following is basic pseudo code for constructing the Voronoi diagram given a
Delaunay triangulation in two dimensions.

//Data: Delaunay triangulation of point set A - del, a set of Polygons - voro.
//Result: voro will be the Voronoi diagram induced by A.
Polygon_set voronoi(Triangle_set del) {
Polygon_set voro;
for (each triangle T in del) {
find the circumcentre of T, and store in T;
}
for(each point x in A) {
compute the voronoi region of x and store in voro;
}

return voro;

12



3.2 Obtaining a Voronoi Region

The method for computing the voronoi region of a particular point x € A is to
start at a Delaunay triangle with x as a vertex - then move in a particular direction
along a strongly connected set of Delaunay triangles that contain x and adding
the Voronoi vertices encountered as vertices of the Voronoi region of x. One could
think of this as 'turning’ around the vertex, see Figure 8a. If the Voronoi region
of x is bounded, we will return to the starting Delaunay triangle, and stop there.
If the Voronoi region is unbounded, we will have to travel as far as we can in one
direction from the starting triangle then stop and return to the starting triangle,
proceeding to travel in the other direction. This will pick up two additional vertices,
one for each Delaunay edge containing z that lies on H(A) which make the polygon
unbounded. These additional vertices are points on the perpendicular bisector of an
edge of H(A). A true Voronoi vertex will always be the circumcentre of a Delaunay
triangle. See Figure 8b for two example Voronoi regions.

3.3 Unbounded Voronoi Edges

Consider constructing an unbounded Voronoi edge from a Delaunay edge e in a
triangle 7T, which is labelled anti-clockwise, or positively oriented. Let the e be
directed to agree with the orientation of T'. There are three cases:

1. The circumcentre of T lies on the side of e so that e and the circumcentre of
T form an anti-clockwise triangle. See Figure 9a.

2. The circumcentre of T lies on the side of e so that e and the circumcentre of
T form a clockwise triangle. See 9a.

3. The circumcentre of T lies on e. See Figure 9b.

In the first case, the Voronoi edge will be a ray starting at the circumcentre of T
going in the direction of the vector from the circumcentre of T' to the midpoint of e.
In the second case the Voronoi edge will again be a ray starting at the circumcentre
of T" but the direction of the ray is reversed from the first case. In the final case,
the midpoint of e and the circumcentre of T are the same. Thus the perpendicular
bisector of e must be calculated, and a ray drawn along the perpendicular bisector
starting at the circumcentre of T" and directed away from T itself.

Figure 9 demonstrates this construction, the unbounded Voronoi edges are shown
in blue. In Figure 9a 1, 2 and 3 are the vertices are of a Delaunay triangle, 4 is
the circumcentre of that triangle and 123 is an anti-clockwise triangle. For the edge
12, 124 forms a clockwise triangle, so the Voronoi edge corresponding to edge 12 is
formed according to case 2. However, for the edges 23 and 31, 234 and 314 form
anti-clockwise triangles so the Voronoi edges corresponding to 23 and 31 are formed
according to case 1. In Figure 9b, the circumcentre of the triangle lies on an edge e
of the triangle, so the Voronoi edge corresponding to e is formed according to case
3.

3.4 Three Dimension Specifics

The Voronoi diagram construction in three dimensions is very similar to two dimen-
sions. We form a Voronoi polygon in three dimensions in a very similar manner to

13



Bounded Voronoi Region

78

Elﬂ
*

g
\

~ *
Second Direction
N First Direction

¢ g

(a) A Delaunay triangulation showing the paths (white and yellow arrows) taken to con-
struct the Voronoi region of two Delaunay vertices. The stars indicate the starting triangles
for those points.

(b) The Voronoi diagram corresponding to the above Delaunay triangulation. Notice the
Voronoi regions for the two points above are constructed from Voronoi vertices encountered
along the paths. The regions are marked by yellow and white ovals.

Figure 8: Demonstrating constructing a bounded and an unbouded Voronoi region

(a) Cases 1 and 2 (b) Case 3

Figure 9: The different cases for constructing a Voronoi edge from a Delaunay edge.

14



[

© 0 N O ;s W N

how a Voronoi region was formed in two dimensions. Instead of turning about a
Delaunay vertex in 2D we turn about a Delaunay edge in 3D, forming a Voronoi
polygon in the same manner - picking up the Voronoi vertices corresponding to the
tetrahedrons we meet, with two additional vertices for unbounded polygons. These
polygons are, very importantly, guaranteed to be co-planar and convex as is pointed
out in [Led07]. A Voronoi region in 3D for a point v is the polyhedron formed by
all the Voronoi polygons corresponding to Delaunay edges which have v as a vertex.
The following is short pseudocode to demonstrate this.

//Data: Delaunay tetrahedrilisation of point set A - del, a set of Polyhedrons -
voro.
//Data: an Edge_set es and a Polygon p.
//Result: voro will be the Voronoi diagram induced by A.
Polyhedron_set voronoi(Tetrahedron_set Del) {
Polyhedron_set voro; Edge_set es; Polygon p;
for(each tetrahedron T in del) {
find the circumcentre of T, and store in T;
}
for(each point x in A) {
find all edges in del which contain x and store in es;
pick the Polyhedron in voro corresponding to x, call it ph;
for(each edge e in es) {
compute Voronoi polygon corresponding to e, storing in P;
add P as a face of ph;
}

return voro;

4 Important Formulae

4.1 Orientation Check

A triangle is positively oriented if walking along the boundary of the triangle in the
direction of the orientation keeps the interior of the triangle on your left, and neg-
atively oriented otherwise. A positively oriented triangle has a positive signed area
in 2D, likewise a negatively oriented triangle has negative signed area. Orientation
will be very important to us for two reasons:

1. Finding the orientation of the triangle with vertices ABC' allows us to deter-
mine which side of the line AB that C lies on.

2. We will lift the vertices of a triangle to a parabaloid to check if a triangle satis-
fies the empty circle property. This test relies on the triangle being positively
oriented.

We begin by computing the signed area of the triangle ABC up to a positive
scale factor.

A, Ay 1
SignedArea(A,B,C)=| B, B, 1
c, C, 1
And define our orientation test by:
1, if SignedArea(A, B,C) >0
PositiveOriented(A, B,C) = < 0, if SignedArea(A, B,C) <0

—00, if SignedArea(A, B,C) =0



Remark. In the third case of PositiveOriented’s definition we do not have a triangle,
but in fact have a line. Hence the value —oo. If we ever try to create a triangle
ABC' and get a value of -co for PostiveOriented(A, B, C), then the program will
throw an error.

When dealing with a tetrahedron ABC'D we instead compute the signed volume
of the tetrahedron up to a positive scale factor.

A, A A1
SignedVolume(A, B, C, D) = g‘r gy gz 1

x y z

D, D, D, 1

Translating a tetrahedron does not change its signed volume, and so translation by
—D reduces the above to:

A,—D, A,—D, A.—D. 1 4D, A, D, A_D.
B,-D, B,—D, B.—D. 1

C,-D, C,—D, C.—p. 1|~ |Be=De By=Dy B.=D:
P c,—-D, C,—D, C.—D,

The orientation test for a tetrahedron is the same as for a triangle with SignedArea(A, B, C')
replaced by SignedVolume(A, B, C, D).

4.2 Empty Circle Check

We need to efficiently check if a point D lies inside the circumcircle of a triangle 7.
To do this, we will end up finding the signed volume of a parallelepiped. The main
result is from Guibas and Stolfi [GS85] (see pg. 107), Figure 10 is extracted from
this. The idea is to lift D and the vertices of T' to the parabaloid of revolution by
the following map, and perform an orientation test on the tetrahedron defined by
the four points.

R* — R3
(a,b) — (a,b,a® 4 b?)

Lemma 4.1. The point D lies inside of the circumcircle of a positively oriented
triangle ABC' if and only if

A, A, A2+ A2 1

B, B, BX+B: 1
P(A,B,C,D)=| 7 7V 5Tl >0
( )=l ¢ vt

D, D, D:+D? 1

We will not transcribe the proof of the above lemma here, but a picture (Figure
10) from [GS85] gives some intuition. We define a plane P in three dimensions using
the vertices of the triangle lifted onto the parabaloid of revolution. Another point
x is co-circular with the vertices of the triangle in 2D if and only if it is co-planar
with P when lifted onto the parabaloid of revolution. If x is not co-planar, then the
side of the plane x lies on determines if x lies inside the circle.

Translating a triangle ABC and a point D in the plane will not change the
orientation of ABC' or the sign of Z(A, B,C, D), and so we can reduce our test to

16



108 ' L. Guibas and J. Stalfi

L L= )‘{1'1}

Fig. 18. The quadratic map for computing InCircle.

Figure 10: Figure of the lifting from Guibas and Stolfi [GS85].

a 3 X 3 determinant. We translate by —D, to obtain that the point D lies inside of
the circumcircle of a positively oriented triangle ABC' if and only if

Ay —Dy A —D, (Ay—D,)?+ (A, —D,)? 1

B.~D, By,~Dy (B.—D,+(B,~D,* 1|_,

C,—D, Cy—D, (Co—D,)?+(C,—D,)? 1|
0 0 0 1

Which is, expanding on the last row

A,—D, A,—D, (A,—D,)?*+ (4, —D,)?
B,—D, B,—D, (B,—D,)?+(B,—D,)?|>0
Cx_Dcp Cy_Dy (Ox_Dm>2+(Cy_Dy)2

So we end up checking if the signed volume of the parallelepiped defined by the three
3D vectors that are the rows of the above matrix is postive. The above generalises
to three dimensions by mapping (a, b, ¢) to (a, b, c,a* + b* + ¢?).

Lemma 4.2. The point E lies inside the circumcircle of a positively oriented tetra-
hedron ABCD if and only if

Ay—E, Aj—E, A,—E, (Ay—E)?+ (A, — E,)?+ (A, — E.)?
B.~E, By—E, B.-E. (B.~E)+(B,~Ef+(B.—E}|_
C,—E, Cy—E, C.—E, (Cyo—E,)?+(C,—E)?+(C,—E)? |~
D,—E, D,—E, D.—E. (D,—E,)?+ (D, E,)?+ (D, — E.)?

4.3 Circumcentre Calculation

Finding the circumcentre of a triangle sitting in R? is relatively easy. One can
hardcode finding the intersection of the perpendicular bisectors of two sides of the

17



0 N o oA W N R

triangle, giving the circumcentre. However for a triangle sitting in R3, or a tetrahe-
dron, some more sophistication is needed. The following are from Shewchuk [Shel3]:

Let |A| denote the Euclidean norm of the vector A. Let A x B denote the cross
product of A and B. The circumcentre of the circumcircle of a triangle ABC' in R3
is coplanar with the triangle and is given by:

|A= CP(B - C) = |B=CPA-0) x [(A=C) x (B—C)]
AA=C) x (B-O)?

C+

The circumcentre of the circumsphere of a tetrahedron ABCD in R3 is given by:

1 |[A=DI(B = D) x (C = D) +|B~ D]*C = D) x (A~ D) +|C ~ DI(A~ D) x (B~ D)

2SignedVolume(A, B, C, D)

Where
A,-D, A,—D, A, —D,
SignedVolume(A4, B,C,D)=| B, - D, B,—D, B,—-D,
¢,-b, ¢C,—-D, C,—-D,

5 Data Structures and Efficiency

5.1 Data Structures

Some main data structures used in the program will be outlined here as an aid.
Edges, Faces, Triangles and Tetrahedron structures will have vertices as integer
labels rather than actual real number co-ordinates as it is easier to compare two
integers than multiple doubles and retrieval is also easier. The integer labels can
pull from an array of doubles when co-ordinates are necessary. We consider a triangle
to have the following data structure.

typedef struct Edge {
int from, to; //2 vertices as integer labels
} Edge;

typedef struct Triangle {
int vert_1, vert_2, vert_3; //Three vertices of triangle as integer labels
Edge edge_1, edge_2, edge_3; //Three edges of the triangle
//adjacent [i] is pointer to the triangle sharing edge_i+1 - NULL if none exist
struct Trianglex adjacent [3];
double circum[2]; //Circumcentre of the triangle
int checked; //Has the triangle been checked in step j of Bowyer Watson?

} Triangle;

We use a doubly linked list (DLL) to hold pointers to the triangles in Del, and our
bad triangles. Insertion and deletion are quite fast, and being able to search in both
directions is very powerful when Hilbert sorting is introduced.

typedef struct DLL_NODE {
Triangle *data;
struct DLL_NODE *next, *prev;
} DLL_NODE;
struct DLLA{
DLL_NODE x*xfirst, *last;
g

We use an edge stack to form our polygon of edges on the boundary of the Delaunay
cavity. While a triangle pointer stack keeps track of the good triangles that sit on
the border of the Delaunay cavity. A stack is used for these because an edge on the
boundary only needs to be seen once and is then thrown away.

18



© 0 N O ;A W N e

D s W N e

© 0 N O ;A W N e

© 0 N O oA W N e

e
= o

//Edge stack
typedef struct Stack{
int top_index;
int capacity;
Edge *item;
} Stack;
//Triangle pointer stack
typedef struct Triangle_Stack{
int top_index;
int capacity;
Triangle **xitem;
} Triangle_Stack;

We give a Voronoi region in 2D the following data structure. The Voronoi Diagram
will be an array of pointers to Voronoi regions, or Polygons.
struct Polygon2D { //An array of vertices, and a boolean unbounded

doublex v;

int capacity;

int num_items;
int unbounded;

Much is similar in the three dimensional case, with a DLL still holding the De-
launay tetrahedrilisation, and a polygon stack and tetrahedron pointer stack holding
the boundary of the Delaunay cavity and the tetrahedrons on that boundary respec-
tively. However the Voronoi region structure is different, and we need a tetrahedron
data structure, not a triangle data structure. Let us start with the tetrahedron
data structure. To quote [L.S05], which compared five Delaunay tetrahedrilisation
programs, “All five programs store the set of tetrahedra, and for each tetrahedron
t, references to its vertices and neighbors—a neighbor is another tetrahedron that
shares a common triangle with ¢”, and we are no different.

typedef struct Edge { //Edges have integer labelled vertices
int v[2]; //2 vertices as integer labels

} Edge;

typedef struct Face { //Faces are triangles - integer labelled vertices
int v[3]; //3 vertices as integer labels

} Face;

typedef struct Tetrahedron {

int v[4]; //Four vertices of tetrahedron as integer labels.

Face f[4]; //Four faces of tetrahedron

//adjl[i] is pointer to the Tetrahedron sharing face[i] - NULL if none exist.

struct Tetrahedronx adj[4];

double circum[3]; //The co-ordinates of the circumcentre

int checked; //Has the tetrahedron has been checked in step j of bowyer_watson
} Tetrahedron;

A Voronoi region in 3D will be a polyhedron. Again, the Voronoi diagram will be
an array of pointers to Voronoi regions, in this case Polyhedron structures.

typedef struct Polygon3D {//Holds the Polygon’s vertices in an array.
doublex v;
int capacity;
int num_items;

} Polygon3D;

struct Polyhedron {//An array of Polygon3D pointers, and a boolean unbounded
Polygon3D *xfaces;
int num_faces;
int unbounded;

g

19



5.2 Keeping Track of Adjacencies

The basic Bowyer Watson implementation works, but it is rather slow. The first
problem we have is that for each point in A we loop over every triangle in Del.
Using the fact that Delaunay cavities must be strongly connected (see Lemma 2.2)
we see that looping over every triangle in Del to find all bad triangles is unnecessary.
We can instead find just one element of the cavity, and then recursively check the
neighbours of this triangle to find the entire cavity.

The following keeps track of triangle adjacencies on the fly, the first two opera-
tions are performed at each step of the Boywer Watson, with the last perfomed only
when removing the super triangle.

1. Keep track of which good triangles sit on the border of the Delaunay cavity,
call them the border triangles. Then, when a new triangle T is formed with
an edge e the border triangle BT sharing e (if it exists) points to 7', and T
points back to BT'.

2. When all the new triangles have been added to retriangulate the cavity, we fill
in the adjacencies between these new triangles.

3. On removal of all triangles which share vertices with the super triangle, the
triangles which were adjacent to removed triangles must have this adjacency
set to NULL.

5.3 Hilbert Curve

From the previous section we see that it is imperative that we quickly locate one
bad triangle, as the other bad triangles spread out as neighbours from the first one.
This brings us on to the notion of point location. If we can sort the input points
such that the points are entered into the Bowyer Watson algorithm with the point
entered at step n geometrically close to the point entered at step n+ 1 this will have
two benefits. Firstly, we will likely locate a bad triangle quickly since the newly
added point will probably be in the circumcenter of a recently added triangle to the
Delaunay triangulation. Secondly, these recently added triangles in question can be
cached and accessed faster. I was reading lecture notes from Remacle and Legat at
Université catholique de Louvain [RL15] when I encountered the idea of sorting the
input points along a Hilbert curve.

Space filling curves are commonly used to reduce a multi-dimensional problem to
a one dimensional problem, producing a mapping from a hypercube to an interval. A
curve is a linear traversal of a discrete multi-dimensional space. A Hilbert curve is a
continuous, space-filling curve - that is a curve with no breaks or jumps whose range
fills a hypercube. The Hilbert curve can be thought of as the limit of a sequence
of curves (H,),, where n denotes the order of the curve. To get next curve in
the sequence we take the curve of order n — 1 and make four copies of it. We then
rotate and place these copies so that one copy sits in each quadrant of a square, with
the bottom left quadrant’s curve starting at (0,0) and the bottom right quadrant’s
curve finishing at (n? —1,0). We join up these curves in the order: bottom left, top
left, top right, bottom right to form the curve of order n. The curves of order 1 and
2 are depicted in Figures 11 and 12 in two dimensions, with H; being the first curve
in the sequence (H,)%°

n=1"

20



1
2
3

4
5
6
7
8

Each of the curves H,, is simple, meaning H,, does not cross itself. However the
Hilbert curve, the limit of the sequence of curves (H,)5,, is not simple. If it were
simple, then there would be a continuous bijection from the unit interval to the unit
square. The unit interval is a compact space by the Heine-Borel theorem since it
is closed and bounded. The unit square is a Hausdorff space since it is a subset of
the Hausdorff space R2. So this bijection would in fact be a homeomorphism, as
we will show. However, the unit interval can’t be homeomorphic to the unit square
as the unit interval can be made disconnected by removing an interior point from
the unit interval, but the unit square can not be made disconnected by removing a
single point from it.

Theorem 5.1. A continuous bijection from a compact space C' to a Hausdorff space
H is a homeomorphism.

Proof. Let f be a continuous bijection from C' to H. Let V' C C be closed in C.
Then V' is compact since V' is a closed subset of a compact space. Thus f(V) is
compact since the image of a compact space under a continuous map is compact.
Finally f(V) is closed in H since a compact subset of a Hausdorff space is in fact
closed. But f(V) = (f~1)~1(V), that is, the image of V under f is the preimage of
V under the inverse of f. Thus if V is closed in C, (f~')7*(V) is closed in H, so
f~1 is continous. So f is a homeomorphism. O]

.3 (2.3 (3.3)

0.3

(4,1 (1,1

0 (12 22 (35

@1y (1,13 2.1y (31

(0,0 1.0y

w0 —————l010 eyl n

Figure 11: Order 1 curve Figure 12: Order 2 curve

We choose the Hilbert curve in particular because it has very nice properties,
such as being space-filling as was already mentioned. Most importantly, two points
that are close along a Hilbert curve in two dimensions are guaranteed to be close
together in the plane. Namely we are interested in encoding each point in A C R?
to a one dimensional distance, and sorting A in increasing order of these distances.
There are many good algorithms for encoding and decoding Hilbert curves, with
eight presented in [Liu+416] alone. We implement the two dimensional Hilbert Curve
encoding algorithm from [CWSO07].

//rotate/flip a quadrant appropriately.
void rot(int quad, int *x, int *y, int w) {
int temp;
if (quad == 0) {
temp = *x;
*¥X = *xy;
*y
}

temp;

21



45

else if (quad == 1) {
Xy = *xy - w;

}
else if (quad == 2) {
*¥X = XX - W;
*y = *y - W;
}
else {
temp = *Xx;
*x = w - *xy - 1;
*y = w *x 2 - temp - 1;
}

}

//Converts a 2D integer point (x,y) to a 1D distance d, with grid resolution n
//d will be called the Hilbert distance
int xy2d (int n, int x, int y) {
int r;
int max;
int w;
int temp;
int quad;
int rx, ry, d = 0;
if (x >= y) max =
else max = y;
r floor (log(max)/log(2)) + 1;
W (int)pow(2, r - 1);
if ((n % 2) !'= (r % 2)) {
temp = x;
x v
y temp;
}
while (r != 0) {
rx (x & w) > 0;
ry (y & w) > 0;
quad = (3 * rx) "~ ry;
d += w * w * quad;
rot (quad, &x, &y, w);
r =r - 1;
w o= w/2;

X3

}

return d;

To explain this, n is the maximum order curve we will consider and r is the
minimum order curve such that (x,y) sits on the curve. Initially, if the parity of n
and r differ we swap x and y. Then using bitwise operations, we find which quadrant
of the square (0,0), (0,72 —1), (r* —1,72—1), (r* —1,0) that (x,y) sits in. Based
on this quadrant, the encoded value d of (z,y) is updated, and (z,y) is updated in
the function rot to account for the rotation of the curves in each different quadrant.
Quadrant 0 is the bottom left, quadrant 1 is the top left, quadrant 2 is the top right,
quadrant 3 is the bottom right. Then r is decremented because we need to check
a curve one order lower than we had in the last step. We iteratively repeat this
procedure until r is 0.

To Hilbert sort our points in A C R? we can make a copy of A and perform a
translation on all the points (z,y) so that > 0 and y > 0, then convert these to
integers by forming an integer point (a,b) with, say the first five significant figures
of x and y respectively. Sorting these integer points in ascending ordering of their
Hilbert distance, will thus sort A. This will not be an exact sorting of A due to
an inaccurate integer conversion, but that is acceptable as two adjacent points in A
after sorting will still be close geometrically, which is the end goal. See Figure 13
for an example of this sorting, the white line shows the path taken to traverse the
points of A after sorting.

22



Figure 13: 10,000 points in 2D sorted along a Hilbert curve

5.4 Time savings

To demonstrate the magnitude of the time savings, here is an example on 20,000
points in R%. The following experiments were performed on my home computer
with an Intel Core i5-6500 CPU and 8GB of RAM. Without performing the first
optimisation, that is finding one bad triangle and finding the other bad triangles as
neighbours of it, the program took 51.4 seconds. Performing the first optimisation,
improved this to 17.4 seconds. Performing a Hilbert sort on the 20,000 points before
using the optmised Bowyer Watson algorithm vastly improved the program run
time to 0.6 seconds altogether for the sorting, Delaunay triangulation and Voronoi
diagram computation.

This allows the program to run on very large data sets very fast. There is one
problem, the program does not use exact arithmetic, and so it often makes critical
errors on data sets with more than about 100,000 points - this is generally due to a
triangle approximating a line. In Figure 14 there is a zoomed in section of a Voronoi
diagram of 100,000 points. The full Voronoi diagram of the points took 3.1 seconds
to compute.

23



Figure 14: A section cut out a Voronoi diagram of 100,000 points in 2D

6 Results and Applications

6.1 Results in Two Dimensions

24



An example of the program output on ten points in two dimensions follows:

Figure 15: 10 input points in 2D

Figure 16: The Delaunay triangulation of the 10 points

25



Figure 17: The Voronoi diagram of the 10 points

Figure 18: The Voronoi diagram of the points in white, with the Delaunay in blue

26



An example of the program output on 100 points in two dimensions follows:

Figure 19: 100 input points in 2D

Figure 20: The Delaunay triangulation of the 100 points

27



Figure 21: The Voronoi diagram of the 100 points

Figure 22: The Voronoi diagram of the points in white, with the Delaunay in blue.

6.2 Results in Three Dimensions

An example of the program output on nine points consiting of the eight vertices of
the unit cube, and the centre of the unit cube which is the origin in R? follows.

28



(a) Colour version (b) A mesh version

Figure 23: The Delaunay tetrahedrilisation of the nine points, containing 12 tetra-
hedrons - two for each face of the cube.

(a) The Voronoi diagram of the nine points  (b) The only bounded Voronoi region

Figure 24: The bounded region shown in Figure 24b corresponds to the centre of
the cube.

(a) Forty random points in 3D

(b) Bounded Voronoi regions of these points

29



Figure 26: The Delaunay tetrahedrilisation of 1000 points

6.3 Applications

We briefly discuss some applications of Voronoi Diagrams:

1. Texture generation: The Voronoi Diagram induced by point sets can be used
to produce natural textures in computer graphics such as lava like textures,
or cobblestone flooring.

2. Natural growth models: Voronoi diagrams can be considered as arising from
the following process. A set of points each begin growing a crystal. The
crystals move outwards from the points at the same rate. Crystals stop growing
in a particular direction if they are touching another crystal in that direction.
This will result in each crystal being a Voronoi region. See [LP12], Section 3
for examples in biology modelled with Voronoi diagrams.

3. Geostatistics: For example, say you took measurements of the amount of gold
at one hundred exploratory drill points in a region of mountains. Forming
the Voronoi diagram associated with these one hundred points would give a
method of estimating the area in these mountains with the highest concentra-
tion of gold deposits.

30



7 Problems and Conclusion

7.1 Implementation Flaws

We do not use exact arithmetic in our implementation, because it is slow. However
for a robust implementation exact arithmetic would be a necessity. Not using it
causes two main problems:

1. We assume that input points are distinct, but we do not check this assumption
is valid. Even if we did check this, without exact arithmetic we would have to
say two points that are within a certain tolerance are non-distinct.

2. The program can currently fail to correctly compute an orientation. In two
dimensions this primarily occurs when a triangle is very thin or when a tetra-
hedron on the parabaloid of revolution is very thin. As a result the program
can incorrectly determine if a point lies inside the circumcircle of a triangle, or
draw a voronoi edge in the wrong direction. There is an informative discussion
of this problem in [RL15] (see pg. 26).

Currently we do not sort the points along a Hilbert curve in three dimensions.
This is because I found visually presenting the three dimensional Voronoi diagram
to be difficult, and from what I found, so do most. The program already runs fast
enough without sorting for any input point set I can reasonably visualise. However,
if I improved the visualisation it would definitely be worth sorting the points.

On the topic of sorting, it is suggested in the literature to avoid completely
sorting the input points but instead to sort randomised bins of points. This is an
effort to combine the benefits of randomised point insertion, and inserting points in
an order so that they are close together. See [ACRO03] for more information on this.

7.2 Problems Encountered

This section is a bit different from what would be regularly seen in articles and per-
haps somewhat informal, but I would like to outline some things I found particularly
hard to work with in this project and how that effected the project.

1. Tt is hard to pick good data structures, yet very important to do so. As an
example, when I first wrote the program in two dimensions the triangle data
structure did not store which triangles were adjacent to it. This turned out
to be very inconvenient later when efficiency was considered, and took much
time to fix. Furthermore, the Delaunay triangulation was originally stored in a
bag, and this had to be changed to a doubly linked list when ordering became
important.

2. Getting the Voronoi diagram from the Delaunay triangulation was actually
harder than I expected it to be. It is very easy to determine the Voronoi edge
between neighbouring triangles, but I originally found it quite awkward when
a Delaunay triangle had an edge with no neighbour. The problem was figuring
out which side of an edge the circumcentre of the triangle lay on. Fortunately,
performing an orientation check on the triangle formed by the edge and the
circumcentre easily solves this.

31



3. Learning OpenGL was somewhat problematic. I am very grateful to my super-
visor for his C code for drawing three dimensional convex hulls with OpenGL,
but there are still some flaws in my visualisation. For example, in three di-
mensions, where two tetrahedrons or Voronoi regions intersect, the colours of
the region merge on the face they intersect on, which is not ideal. There are
some clever ways of getting a face to be different colours on different sides of
the face, but I did not get it quite right.

7.3 Conclusion

We have discussed in detail how to compute the Delaunay triangulation and the
Voronoi diagram of a point set in R? and shown how this adapts to R*. We have
shown how to improve the efficiency of the Bowyer Watson algorithm using the fact
that the triangles in a Delaunay cavity are strongly connected, and using Hilbert
sorting to order the input points. Finally we have presented results, and applica-
tions of the work. Full C source code is provided in the appendix for the three
dimensional case, with code snippets for the two dimensional. At my website,
www.maths.tcd.ie/~martins7 I will host a project folder as long as I have access
to the URL, and full two dimensional source code can be found there.

To conclude, computational geometry is not easy, but it is as rewarding as it is
challenging. I would like to quote the Wikipidea page on Computational Geometry
here, “Some [geometry| problems seem so simple that they were not regarded as
problems at all until the advent of computers”. That is to say, some geometry
problems seem awfully simple until you try to get a computer, which lacks our
powerful visual processing, to solve them.

Bibliography

[Des44] R. Descartes. Principia philosophiae. Ludovicum Elzevirium, 1644.

[Bow81] A. Bowyer. “Computing Dirichlet tessellations”. In: The Computer Jour-
nal 24.2 (1981), pp. 162-166.

[Wat81] D. F. Watson. “Computing the n-dimensional Delaunay tessellation
with application to Voronoi polytopes”. In: The Computer Journal 24.2
(1981), pp. 167-172.

[GS85] Leonidas Guibas and Jorge Stolfi. “Primitives for the Manipulation of
General Subdivisions and the Computation of Voronoi Diagrams”. In:
ACM Transactions on Graphics 4.2 (1985), pp. 74-123.

[Far95] Andrew Farrell. Fortune’s Voronoi Diagram Algorithm Exteded to Con-
ver Sites. Trinity College, 1995.
[AKO00] Franz Aurenhammer and Rolf Klein. “Voronoi Diagrams”. In: Handbook

of Computational Geometry 5 (2000), pp. 201-290.

[Mat02] Jiti Matousek. Lectures on discrete geometry. Vol. 212. Springer Science
& Business Media, 2002.

[ACRO3]  Nina Amenta, Sunghee Choi, and Giinter Rote. “Incremental construc-
tions con BRIO”. In: Proceedings of the nineteenth annual symposium
on Computational geometry. ACM. 2003, pp. 211-219.

32



[LS05] Yuanxin Liu and Jack Snoeyink. “A Comparison of Five Implementa-
tions of 3D Delaunay Tesselation”. In: Combinatiorial and Computa-
tional Geometry 52 (2005), pp. 439-458.

[CWS07]  Ningtao Chen, Nengchao Wang, and Baochang Shi. “A new algorithm
for encoding and decoding the Hilbert order”. In: Software: Practice
and Experience 37.8 (2007), pp. 897-908.

[H()DYO?] Paul Harrington, Colm O Dunlaing, and Chee K Yap. “Optimal Voronoi
diagram construction with n convex sites in three dimensions”. In: In-

ternational Journal of Computational Geometry € Applications 17.06
(2007), pp. 555-593.

[Led07] Hugo Ledoux. “Computing the 3d Voronoi diagram robustly: An easy
explanation”. In: Voronoi Diagrams in Science and Engineering, 2007.
ISVD’07. 4th International Symposium on. IEEE. 2007, pp. 117-129.

[LRS10] Jests A. De Loera, Jorg Rambau, and Francisco Santos. Triangulations
Structures for Algorithms and Applications. Springer, 2010.

[DO11] Satyan L. Devadoss and Joseph O’Rourke. Discrete and Computational
Geometry. Princeton University Press, 2011.

[LP12] Thomas M. Liebling and Lionel Pournin. “Voronoi Diagrams and De-
launay Triangulations: Ubiquitois Siamese Twins”. In: Documenta Math-
ematica (2012), pp. 419-431.

[Buc+13]  Kevin Buchin et al. “Vertex deletion for 3D Delaunay triangulations”.
In: Furopean Symposium on Algorithms. Springer. 2013, pp. 253-264.

[Shel3] Jonathan R. Shewchuk. Lecture notes on Geometric Robustness. https:
//people . eecs . berkeley . edu/~jrs/meshpapers/robnotes . pdf.
[Online; accessed 06-March-2017]. 2013.

[RL15] Jean-Francois Remacle and Vincent Legat. Construction of 2D Delau-
nay Triangulations. http://perso.uclouvain.be/jean-francois.
remacle/LMECA2170/Chap2 . pdf. [Online; accessed 16-January-2017].
2015.

[Liu+16] Hui Liu et al. “Encoding and Decoding Algorithms for Arbitrary Di-
mensional Hilbert Order”. In: arXiv preprint arXiv:1601.01274 (2016).

33



Appendix: Code

Short Header File

#ifndef HEADER_FILE
#define HEADER_FILE

typedef struct DLL DLL;
typedef struct Polyhedron Polyhedron;
typedef struct Polygon_2D Polygon_2D;

0N G WN R

#endif

Three Dimensional Code

//Windows compile gcc 3D_Voronoi.c -o 3D_Voronoi glut32.1lib -lopengl32 -1glu32
//Unix compile gcc 3D_Voromnoi.c -o 3D_Voronoi -1lglut -1GL -1GLU -1m

//Sean Martin TCD with Colm O Dunlaing- 18/03/2017

//Contact info: martins7@tcd.ie or seankieran.m@hotmail.com

#ifdef _WIN32

#define _CRT_SECURE_NO_DEPRECATE
#include <windows.h>

9 #endif

11 #include <time.h>

12 #include <stdio.h>
13 #include <GL/gl.h>
14 #include <GL/glu.h>
15 #ifdef _WIN32

16 #include <C:\Users\Sean\Google Drive\College Mathematics\SS\Voronoi Diagrams\glut.h>
17 #else

18 #include <GL/glut.h>
19 #include <unistd.h>
20 #endif

21 #include <stdlib.h>
22 #include <math.h>

23 #include <string.h>
24 #include <float.h>
25 #include "Voronoi.h"

27 //Global variables

28 double *p; //p for points - our array of points

29 double *color; //holds the colors of the Delaunay tetrahedron
30 int state = 0; //A kbd function use

31 int tumble_on = 0; //A kbd function use

32 int num_points; //Will hold the number of points in consideration
33 static int debug = 0; //on/off - debugging/ not debugging

34 int p_on = 0, d_on = 0, v_on = 0, cull_on = 0; //Drawing states
35 double tumble = 0, r_x = 0, r.y = 0, zoom = 1; //for animation
36 double bmin[3], bmax[3]; //for clipping

37 DLL #*del; //Stores Delaunay tetrahedron

38 Polyhedron **voro; //Stores Voronoi Diagram

40 typedef struct Polygon_3D {//Holds the Polygons vertices in an array.
41 doublex v;

42 int capacity;
43 int num_items;
44 } Polygon_3D;

45

46 struct Polyhedron {//An array of Polygon_3D pointers, and a boolean unbounded
a7 Polygon_3D x**faces;

48 int num_faces;
49 int unbounded;
50 };

51

62 //Makes a polygon with capacity cap
53 Polygon_3D *make_polygon(int cap) {
54 Polygon_3D *pg = malloc(sizeof (Polygon_3D));

55 if (pg == NULL) {

56 fprintf (stderr, "ERROR: malloc failed\n");
57 exit(-1);

58

59 pg->capacity = cap;
60 pg->v = malloc(sizeof (double) * pg->capacity);

61 if (pg->v == NULL) {

62 fprintf (stderr, "ERROR: malloc failed\n");
63 exit (-1);

64

65 pg->num_items = 0;

66 return pg;

67 }

68

69 //makes a polyhedron with n faces;

70 Polyhedron *make_polyhedron(int n) {

71 int i;

72 Polyhedron *ph = malloc(sizeof (Polyhedron));

73 ph->num_faces = n;

74 if (ph == NULL) {

75 fprintf (stderr, "ERROR: malloc failed\n");

76 exit (-1);

77

78 ph->faces = malloc(sizeof (Polygon_3D*) * ph->num_faces);
79 if (ph->faces == NULL) {

34



80 fprintf (stderr, "ERROR: malloc failed\n");

81 exit (-1);

82 ¥

83 for (i = 0; i < ph->num_faces; ++i) {
84 ph->faces[i] = make_polygon (30);

85 X

86 ph->unbounded = 0;
87 return ph;
88 }

90 //adds the point a to the polygon pg
91 void add_to_polygon(double *a, Polygon_3D *pg) {
92 if ((pg->num_items + 3) > pg->capacity) {

93 pg->capacity *= 2;
94 pg->v = realloc(pg->v, sizeof (double) * pg->capacity);
95 ¥

96 pg->vIpg->num_items++] = al[0];
97 pg->vIpg->num_items++] = a[1];
98 pg->vipg->num_items++] = a[2];
99 }

101 //pn pulls co-ordinate n from the point labelled by integer input.
102 double pO(int input) {

103 return p[3 * input];

104 %}

105 double pi1(int input) {

106 return p[3 * input + 1];

108 double p2(int input) {
109 return p[3 * input + 2];

112 //Calculates determinant of 2x2 matrix with rows [al, a2], [bl, b2]
113 double determinant_2(double al, double a2, double bl, double b2) {
114 return (al * b2) - (a2 * bi);

115 }

117 //Calculates the determinant of the 3x3 matrix with rows a,b,c
118 double determinant_3(double *a, double *b, double *c) {
119 return af[0] * (b[1] * c[2] - b[2] * c[1]) +

120 al1] * (b[2] * c[0] - b[0O] * c[2]) +
121 al2] * (b[0] = c[1] - b[1] = c[0l);
122}

123

124 //Calculates the determinant of the 4x4 matrix with rows a, b, c, d
125 double determinant_4 (double *a, double *b, double *c, double *d) {
126 double result = 0;

127 double £[3], g[3], h[3];

128 £[0] = bl[1]; £[1]1 = b[2]; £[2] = b[3];

129 glol = cl[1]; gl1]l = c[2]; gl2] = c[3];

130 h[0] = d[1]; h([1] = d[2]; h[2] = d[3];

131 result += a[0] * determinant_3(f, g, h);

132 £[0] = bl0]l; £[1] = b[2]; £[2] = b[3];

133 gl0]l = c[0]; gl1]l = c[2]; gl2] = c[3];

134 h[0] = d[0]; h[1] = d[2]; h[2] = d[3];

135 result -= a[l1] * determinant_3(f, g, h);

136 £[0] = b[0]; £[1] = b[1]; £[2] = b[3];

137 glol = clo]; gl1] = cl[1]; gl2] = cl[3];

138 h[0] = d[0]; h[1] = d[1]; h[2] = d[3];

139 result += a[2] * determinant_3(f, g, h);

140 £[0] = b[0]l; £[1] = b[1]; £[2] = b[2];

141 gl0]l = c[01; gl1]l = c[1]; gl2] = c[2];

142 h[0] = d[0]; h[1] = d[1]; h[2] = d[2];

143 result -= a[3] * determinant_3(f, g, h);
144 return result;

145 }

146

TAT /5 skookokok sk ok ok sk ok ok ok sk ok ok ok sk sk ok ok ok ok ok ok sk sk ok ok ok ok ok sk ok ok sk o o ok sk ok ok ok ok ok sk ok ok ok K K ok sk sk sk ok kK o ok ok sk ok K ok ok ok ok ok ok K ok K
148 These data structures have vertices as integer labels, which will pull

149 from an array of points when actual co-ordinates are needed.

LB0 ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o o o o K K K K K KK oK SR oK ok ok ok o o o K KK K KKK oK oK ok ok ok ok o o o K K K K KK oK oK ok ok ok ok ok ok ok K /)
1561 typedef struct Edge { //Edges have integer labelled vertices

152 int v[2]; //2 vertices as integer labels

153 } Edge;

154

155 typedef struct Face { //Faces are triangles - integer labelled vertices

156 int v[3]; //3 vertices as integer labels

157 } Face;

158

159 typedef struct Tetrahedron {

160 int v[4]; //Four vertices of tetrahedron as integer labels.

161 Face f[4]; //Four faces of tetrahedron

162 //adj[i] is pointer to the Tetrahedron sharing face[i]l - NULL if none exist.
163 struct Tetrahedron* adj[4];

164 double circum([3]; //The co-ordinates of the circumcentre

165 int checked; //Has the tetrahedron has been checked in step j of bowyer_watson
166 } Tetrahedron;

167

168 //Calculates the orientation determinant of the Tetrahedron

169 //It is reduced to a 3x3 calculation through translation by -t->v[3]

170 double tetrahedron_determinant (Tetrahedron *t) {

171 double al3], b[3], cl[3];

172 a[0] = po(t->v[0]) - pO(t->v[3])

173 a[1] = p1(t->v[0]) - pi1(t->vI[3])

174 a[2] = p2(t->v[0]) - p2(t->v[3]);

175 b[0] = pO(t->v[1]) - pO(t->vI[3]);
)
)
)

H

176 b[1] = p1(t->v[1]) - pil(t->vI[3]
177 b[2] = p2(t->v[1]) - p2(t->vI[3]
178 c[0] = pO0(t->v([2]) - pO(t->v[3]

H

H

35



179 c[1] = pi(t->v[2]) - pi(t->v[3]);

180 c[2] = p2(t->v([2]) - p2(t->v[3]);

181 return determinant_3(a, b, c);

182 }

183

184 //makes a positively oriented Tetrahedron with vertices vO, vl, v2, v3.
185 Tetrahedron *make_tetrahedron(int v0O, int vl, int v2, int v3) {

186 Tetrahedron *t = malloc(sizeof (Tetrahedron));

187 if (¢ == NULL) {

188 fprintf (stderr, "ERROR: malloc failed\n");

189 exit (-1);

190 }

191 t->v[0] = v0; t->v[1] = vi; t->v[2] = v2; t->v[3] = v3;

192 double check = tetrahedron_determinant (t);

193 //check should be greater than O is the tetrahedron is positively oriented.
194 //reversing labels reverses the sign of check - and thus the orientation
195 if (check < 0) {

196 t->v[0] = vi;

197 t->v[1] = vO;

198 ¥

199 else if (check == 0) {

200 fprintf (stderr, "ERROR: Tried to make coplanar tetrahedron\n");

201 exit (-1);

202 ¥

203 //Storing the faces - each face is oriented correctly

204 t->£[0].v[0] = t->v[0];
205 t->f[0].v[1] t->v[1];
206 t->f[0].v[2] = t->v[2];
207 t->f[1]1.v[0] = t->v[2];

208 t->f[1].v[1] = t->vI[1];
209 t->f[1].v[2] = t->v[3];
210 t->f[2].v[0] = t->v[2];
211 t->f[2].v[1] = t->v[3];
212 t->f[2].v[2] = t->v[0];
213 t->f[3].v[0] = t->v[0];
214 t->f[3].v[1] = t->v[3];

215 t->f[3].v[2] = t->v[1];

216

217 t->adj[0] = t->adj[1] = t->adj[2] = t->adj[3] = NULL;
218 t->circum [0] = t->circum[1] = t->circum[2] = 0;

219 t->checked = -1;

220 return t;

221 }

222

223 /*****************************************************************************
224 In the bowyer_watson algorithm we start by using a big tetrahedron which

225 surrounds all of the points in consideration.

226 This big tetrahedron must be removed at the end of the algorithm, so this

227 function checks if Tetrahedron *t shares a vertex with this big tetrahedron -
228 the big tetrahedron has vertices n, n + 1 and n + 2

D20 skookkok sk ok ok ok ok sk ok ok ok ok ok ok sk sk ok K K ok ok ok sk ok ok K o ok ok sk ok kK o o ok sk ok ok ok o o ok sk ok ok ok kK ok ok ok ok ok K K o ok ok sk ok K K K ok ok ok ok K ok K o ok ok ok /
230 int shares_vertex_supert(Tetrahedron *t, int n) {

231 int b = t->v[0];

232 if ((b == mn) Il (b ==n + 1) Il (b ==mn+2) || (b ==n + 3))
233 return 1;

234

235 b = t->v[1];

236 if ((b ==mn) || (b ==n+ 1) || (b ==mn+2) || (b ==n + 3))
237 return 1;

238

239 b = t->v[2];

240 if ((b ==mn) || (b ==n+ 1) || (b ==mn+ 2) || (b ==n + 3))
241 return 1;

242

243 b = t->v[3];

244 if ((b ==mn) || (b ==n+ 1) || (b ==mn+ 2) || (b ==n + 3))
245 return 1;

246

247 return O0;

248 }

249

250 //Checks if faces f1 == f2, that is have the same vertices

251 int equal (Face f1, Face £f2) {

252 if ((£f1.v[0] + f1.v[1] + f1.v[2]) != (f2.v[0] + f2.v[1] + f2.v[2])) {
253 return O;

254

255 int a;

256 a = f1.v[0];

257 if (C(a !'= £2.v[0]) && (a !'= f2.v[1]) && (a != f2.v[2])) {
258 return O;

259 ¥

260 a = f1.v[1];

261 if ((a !'= f2.v[0]) && (a !'= f2.v[1]) && (a !'= f2.v[2])) {
262 return 0;

263

264 a = f1.v[2];

265 if ((a != £2.v[0]) && (a !'= f2.v[1]) && (a !'= £2.v[2])) {
266 return O;

267 }

268 return 1;

269 }

270

271 //Check is edges el == e2, that is have the same vertices.
272 int equal_edges (Edge el, Edge e2) {

273 if ((el.v[0] '= e2.v[0]) && (el.v[0] != e2.v[1])) return O;
274 if((el.v[1] '= e2.v[0]) && (el.v[1] != e2.v[1])) return O;
275 return 1;

276

277

36



278 //Code for a DLL of Tetrahedron pointers follows
279 typedef struct DLL_NODE {

280 Tetrahedron *data;

281 struct DLL_NODE #*next, *prev;

282 } DLL_NODE;

283

284 struct DLL{

285 DLL_NODE xfirst, *last;

286 };

287

288 DLL_NODE *make_node () {

289 DLL_NODE *new = malloc(sizeof (DLL_NODE));

290 if (new == NULL) {

291 fprintf (stderr, "ERROR: malloc failed\n");
292 exit (-1);

293 ¥

294 new->next = NULL;

295 new->prev = NULL;

296 new->data = NULL;

297 return new;

298 }

299

300 DLL *make_list() {

301 DLL *new malloc(sizeof (DLL));

302 if (new == NULL) {

303 fprintf (stderr, "ERROR: malloc failed\n");
304 exit (-1);

305 ¥

306 new->first = NULL;

307 new->last = NULL;

308 return new;

309 }

310

311 int is_empty_list(DLL *1list) {
312 return (list->first == NULL);
313 }

314

315 void add_to_list (Tetrahedron *t, DLL *1list) {
316 DLL_NODE *node = make_node ();
317 node->data = t;

318 if (is_empty_list(list)) {

319 list->last = node;

320 X

321 else {

322 list->first->prev = node;
323 X

324 node->next = list->first;
325 list->first = node;

326 }

327

328 void remove_node (DLL_NODE *node, DLL *1list) {
329 if (is_empty_list(list)) {

330 fprintf (stderr,"ERROR tried to delete from empty list\n");
331 exit (-1);

332 ¥

333 if (node == (list->first)) {

334 list->first = node->next;

335 X

336 else {

337 node->prev->next = node->next;
338

339 if (node == (list->last)) {

340 list->last = node->prev;

341 ¥

342 else {

343 node->next->prev = node->prev;
344 ¥

345 free(node) ;

346 }

347

348 DLL_NODE #*find_node (Tetrahedron *t, DLL *1list) {
349 DLL_NODE *node;
350 node = list->first;

351 while (node != NULL) {

352 if (node->data == t) {
3563 return node;

354 b

355 node = node->next;

356

357 fprintf (stderr,"Tetrahedron not present in list %p", t);
358 exit(-1);

359 }

360

361 int list_length (DLL *1list) {
362 int count = 0;

363 DLL_NODE *node;
364 node = list->first;

365 while (node != NULL) {
366 ++count ;

367 node = node->next;
368 ¥

369 return count;

370 }

371

372 void empty_dll (DLL *1list) {
373 DLL_NODE *node;

374 DLL_NODE *temp;

375 node = list->first;

376 while (node != NULL) {

37



377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475

temp = node;
node = node->next;
free (temp->data) ;
free(temp);

}

list->first = NULL;

list->last = NULL;

}

//Print the contents of the doubly linked list, *1list.
void print_DLL(DLL *1list) {

int n;
int k;
DLL_NODE #*node;
FILE *file;
if (list == del) {
if ((file = fopen("Logs/Graph_3D.txt","w")) == NULL) {
fprintf (stderr, "File not openable \n");
exit (-1);
}
}
else {
if ((file = fopen("Logs/DLL_3D.txt","w")) == NULL) {
fprintf (stderr, "File not openable \n");
exit (-1);
}
}

fprintf (file, "num tetrahdrons: %d\n", list_length(list));
node = list->first;
while (node != NULL) {
fprintf (file, "Tetrahedron vertices:\n");
for (k = 0; k < 4; ++k) {
n = node->data->v[k];

fprintf (file, "%d -- %1f, %1f, %1f\n", n, pO0(n), pi(n), p2(n));
¥
node = node->next;
}
if (fclose(file) == EOF) {
fprintf (stderr, "Couldn’t close file");
exit (-1);

}

//The code for a push down Face stack follows
typedef struct Stack{

int top_index;

int capacity;

Face *item;
} Stack;

Stack *make_stack() {

Stack *s = (Stack*) malloc(sizeof (Stack));
if (s == NULL) {
fprintf (stderr, "ERROR: malloc failed\n");
exit (-1);
}
s->top_index = -1;
s->capacity = 100;
s->item = (Face*) malloc(s->capacity * sizeof (Face));
if (s->item == NULL) {
fprintf (stderr, "ERROR: malloc failed\n");
exit (-1);
}
return s;

}

int is_empty_stack (Stack *s) {
return ( s->top_index == -1 );

i

Face top (Stack *s) {
if ('is_empty_stack(s)) {
return s->item [s->top_index];
}
else {
fprintf (stderr ,"ERROR top called on empty stack");
exit (-1);

}

void push (Face t, Stack *s) {
int i = s -> top_index + 1;
if (i >= s -> capacity ) {
s->capacity *= 2;

s->item = realloc(s->item, s->capacity * sizeof (Face));
}
s -> item[i] = t;
s -> top_index = ij;

¥

void pop (Stack *s) {
-- (s -> top_index);

¥

void free_stack(Stack #*s) {
free(s->item);
free(s);

}

38



476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

//Code for a pushdown Tetrahedron pointer stack follows

typedef struct T_Stack
int top_index;
int capacity;
Tetrahedron **item;
} T_Stack;

T_Stack *make_t_stack(

{

) {

T_Stack *s = (T_Stack*) malloc(sizeof (T_Stack));
if (s == NULL) {
fprintf (stderr, "ERROR: malloc failed\n");
exit(-1);
¥
s->top_index = -1;
s->capacity = 100;
s->item = malloc(s->capacity * sizeof (Tetrahedronx));
if (s->item == NULL) {
fprintf (stderr, "ERROR: malloc failed\n");

exit (-1);
}
return s;

}

int is_empty_t_stack (

T_Stack *s) {

return ( s->top_index == -1 );

}

Tetrahedron *top_t (T_
if (!is_empty_t_stack
return s->item [s-

}

else {

Stack * s) {
(s)) {
>top_index];

fprintf (stderr,"ERROR top called on empty T_Stack");

exit (-1);
¥
}

void push_t (Tetrahedr
int i = s -> top_ind
if ( i >= s -> capac
s->capacity *= 2;
s->item = realloc(

s->item[i] = t;
s->top_index = ij;

}

void pop_t (T_Stack *
-- (s -> top_index);

I

void free_t_stack(T_St
free(s->item);
free(s);

I

//square the double d
double sq (double d) {
return d * d;

}

on *t, T_Stack * s) {
ex + 1;
ity ) {

s->item, s->capacity * sizeof (Tetrahedron*));

s) {

ack *s) {

//Checks if the point (e0,el,e2) lies inside the positively oriented

//Tetrahedron *t’s cir
int in_sphere(Tetrahed
double af[4], b[4], c
a[0] = po(t->v[0]) -
a[1] = p1(t->v[0]) -
a[2] = p2(t->v[0]) -
a[3] = sq(al0]) + sq
b[0] = po(t->v[1]) -
b[1] = pi(t->vI[1]) -
b[2] = p2(t->v[1]) -
b[3] = sq(b[0]) + sq
c[0] = po(t->v[2]) -
c[1] = p1(t->v[2]) -
c[2] = p2(t->v[2]) -
c[3] = sq(cl[0]) + sq
d[0] = po(t->v[3]) -
d[1] = p1(t->v[3]) -
d[2] = p2(t->v[3]) -
d[3] = sq(d[0]) + sq

if (determinant_4(a,
return O;

else
return 1;

}

cumsphere.
ron *t, double e0, double el,
[4], d[4];
e0;
el;
e2;
(al1]l) + sq(al21);
e0;
el;
e2;
(b[1]) + sq(b[2]);
e0;
el;
e2;
(c[1]) + sq(cl[21);
e0;
el;
e2;
(d[1]1) + sq(d[2]);

b, c, d) <= 0)

double e2) {

//Checks if face f is shared with a tetrahedron in list.
node in list, and does backwards search,
int shared_face_in_graph(Face e, DLL_NODE *node, DLL *1list) {

//The search starts at
DLL_NODE *temp;

temp = node->prev;

while (temp != NULL)
if (equal(e, temp-
else if (equal(e,
else if (equal(e,

{
>data->f[0])) return 1;
temp->data->f[1])) return 1;
temp->data->f[2])) return 1;

39

then

forawrds.



575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619

621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673

else if (equal(e, temp->data->f[3])) return 1;
temp = temp->prev;

}

temp = node->next;

while (temp != NULL) {
if (equal(e, temp->data->f[0])) return 1;
else if (equal(e, temp->data->f[1])) return 1;
else if (equal(e, temp->data->f[2])) return 1;
else if (equal(e, temp->data->f[3])) return 1;
temp = temp->next;

}

return 0;

}

% KKK K KKK oK ok ok ok o o o K KK KK KKK K R R oK ok ok o o R K K KK K KKK oK ok ok ok ok ok o K K K KK KKK oK ok ok ok ok o o o K K K
Recursively checks the neighbours of Tetrahedron *t. If a neighbour is bad it is
added to DLL *bad and checked itself. Otherwise neighbour is marked as checked.
At each step, tetrahedrons are ignored that have a checked value equal to run.
ok ok ok ok ok ok ok ok ok ok o o o o o K K K K K KK oK Sk ok ok ok ok o o o o K K K K K KKK oK ok ok ok ok ok o o o K K K K K K oK oK oK ok ok ok o o o o o K K K K K K Kok ok /
void check_neighbours(Tetrahedron *t, int run, DLL #*bad) {

DLL_NODE *node;

Tetrahedron *nbhr;

int i;
t->checked = run; //Don’t look at this tetrahedron again this step.
for(i = 0; i < 4; ++i) {

nbhr = t->adjl[il;
//Check if the neighbour is non NULL
if (nbhr NULL) {
//0nly check each tetrahedron once
if (nbhr->checked < run) {
if (in_sphere(nbhr, pO(run), pi(run), p2(run))) {
node = find_node (nbhr, del);
add_to_list (nbhr, bad);
remove_node (node, del);
check_neighbours (nbhr,
¥
else {
nbhr ->checked =

run, bad);

run;

}
}
¥

//Checks if *t has face f belonging to nbhr,
int find_matching_face(Tetrahedron *t, Face f,

and if so updates *t’s adjacency
Tetrahedron *nbhr) {

if (equal (¢t->£[0], £)) {
t->adj [0] = nbhr;
return 1;

¥

if (equal (t->f[1], £)) {
t->adj [1] = nbhr;
return 1;

¥

if (equal (t->f[2], £)) {
t->adj [2] = nbhr;
return 1;

if (equal (t->f[3], £)) {

t->adj [3] = nbhr;
return 1;
}
fprintf (stderr,"Found no match for a face in a tetrahedron\n");
exit (-1);
return O;

¥

% 5 o K KKKk oK KoK oK ok ok ok o o o o K K K K K KK K oK ok ok ok ok o o o o K K K K KKK SR oK ok ok ok ok o o K K K KK K oK oK K ok ok ok o ok o o o K K K

Checks if face f is shared by any tetrahedron in a search starting at node and

moving backwards. If it is, the tetrahedron pointed to by node has

adj[face_no] updated with the found tetrahedron.

Kk ok ok ok ok ok ok ok ok ok o o o o o o K K K K KoK ok ok ok ok ok ok o o o o K K K K K K KoK oK ok ok ok ok ok ok o o K K K K K oK ok ok ok ok ok ok o o o o o o K K K K K K Kok ok /

void find_adjacent_tetra_to_face(Face f, DLL_NODE *node, int face_no) {
DLL_NODE *comp = node->prev; //Why can’t this be NULL?

if (node->data->adj[face_nol NULL) {
while (comp NULL) {
if (equal(f, comp->data->f[0])) {
comp->data->adj [0] = node->data;
node->data->adj[face_no] = comp->data;
break;

¥

else if (equal(f, comp->data->f[1])) {
comp->data->adj[1] = node->data;
node->data->adj[face_no] = comp->data;
break;

&

else if (equal(f, comp->data->f[2])) {
comp->data->adj[2] = node->data;
node->data->adj[face_no] = comp->data;
break;

}

else if (equal (f, comp->data->f[3])) {
comp->data->adj[3] = node->data;
node->data->adj[face_no]l] = comp->data;
break;

}

40



674 comp = comp->prev;

675 ¥

676 ¥

677 }

678

679 //Finds all adjacencies moving backwards in a list starting at start
680 void find_adjacencies (DLL_NODE *start) {

681 Face face;

682 DLL_NODE *node;

683

684 node = start;

685 while (node != NULL) {

686 //check face 1

687 face = node->data->f[0];

688 find_adjacent_tetra_to_face(face, node, 0);
689 //check face 2

690 face = node->data->f[1];

691 find_adjacent_tetra_to_face(face, node, 1);
692 //check face 3

693 face = node->data->f[2];

694 find_adjacent_tetra_to_face(face, node, 2);
695 //check face 4

696 face = node->data->f[3];

697 find_adjacent_tetra_to_face(face, node, 3);
698

699 node = node->prev;

700 ¥

701 }

702

703 //Make all Tetrahedrons which *t points to point to NULL instead of back to *t

704 void delete_ties(Tetrahedron *t) {
705 int i, j;
706 for(i = 0; i < 4; ++i) {

707 if (t->adj[i] !'= NULL) {

708 for(j = 0; j < 4; ++j) {

709 if (t->adj[il->adj[j] == t) {
710 t->adj[il->adj[j] = NULL;
711 break;

712 }

713 }

714 }

715 }

716 }

717

718 //Produces the Delaunay tetrahedrilisation of our points in p
719 void bowyer_watson() {

720 int i, j;

721 int index, shared_face, found_bad;

722 Face f;

723 Tetrahedron *tl, *t2;

724 DLL *bad = make_list();

725 DLL_NODE *node, *temp;

726 Stack *polyhedron = make_stack(); //The Delaunay cavity

727 //border_tetras will hold the good tetrahedrons on the border of the cavity
728 T_Stack *border_tetras = make_t_stack();

729

730 //Add super Tetrahedron vertices to array of points

731 index = 3 * num_points - 1;

732 pl++index] = 0; pl++index] = 0; pl[++index] = 100000; //Vertice 1
733 pl++index] = -100000; pl[++index] = -100000; pl++index] -100000; //Vertice 2
734 pl++index] = 100000; pl++index] = -100000; pl++index] = -100000;//Vertice 3
735 pl++index] = 0; pl++index] = 100000; pl++index] = -100000;//Vertice 4
736

737 Tetrahedron *big_t =

738 make_tetrahedron(num_points, num_points + 1, num_points + 2, num_points + 3)
739 add_to_list(big_t, del);

740

741 for (i = 0; i < num_points; ++i) {

742 empty_dll(bad); //reset the bad tetrahedrons

743 node = del->first;

744 found_bad = 0;

745 while (!found_bad) { //Find one bad tetrahedron

746 if (node == NULL) {

747 fprintf (stderr, "%s\n", "ERROR: found no bad tetrahedron");

748 exit (-1);

749

750 if (in_sphere(node->data, p0(i), p1(i), p2(i))) {

751 add_to_list (node->data, bad);

752 remove_node (node, del);

753 found_bad = 1;

754 ¥

755 else node = node->next;

756 }

757

758 check_neighbours (bad->first->data, i, bad); //Find all bad tetrahedrons
759 node = bad->first;

760 while (node != NULL) {

761 for(j = 0; j < 4; ++j) {

762 f = node->data->f[j];

763 shared_face = shared_face_in_graph(f, node, bad);

764 if (! shared_face) {//create the Delaunay cavity

765 push(f, polyhedron);

766 push_t (node->data->adj[j], border_tetras);

767 }

768 ¥

769 node = node->next;

770 }

771 //Create the new tetrahedrons and update adjacencies

772 //with the good tetrahedrons on the border of the cavity.

41



773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871

f = top(polyhedron);
add_to_list (make_tetrahedron(f.v[0], f.v[1], f.v[2], i), del);

node = del->first; //different line - marks start of new tetrahedrons
t2 = top_t(border_tetras);
if (¢2 != NULL) {

tl = del->first->data;
find_matching_face(tl, f, t2);
find_matching_face(t2, f, t1);

pop_t (border_tetras);
pop(polyhedron);
//inside the while loop is a repeat of the above without the different
while (!is_empty_stack(polyhedron)) {
f = top(polyhedron);
add_to_list (make_tetrahedron(f.v[0], f.v[1], f.v[2], i), del);
t2 = top_t(border_tetras);
if (t2 != NULL) {
tl = del->first->data;
find_matching_face(tl, f, t2);
find_matching_face(t2, f, t1);
¥
pop_t (border_tetras);
pop (polyhedron) ;
}

find_adjacencies(node); //Fill in adjacencies between new tetrahedrons
}
node = del->first;
while (node != NULL) {
//Remove tetrahedrons which intersect the super tetrahedron
if (shares_vertex_supert (node->data, num_points) == 1) {
temp = node;
node = node->next;
delete_ties (temp->data);
free (temp->data);
remove_node (temp, del);
¥
else {
node = node->next;
}
}
//clean up
empty_dll (bad);
free(bad);
free_stack(polyhedron);
free_t_stack(border_tetras);

¥

//returns the Euclidean norm squared of input
double norm_sq(double *input) {

return sq(input[0]) + sq(input[1]) + sq(input[2]);
B

//subtracts b from a and stores in r
void vector_subtraction(double al, double a2, double a3,
double bl, double b2, double b3, double *r) {
r[0] = al - bil;
r[1] = a2 - b2;
r[2] = a3 - b3;
¥

//crosses u with v and stores in r

void cross_product (double *u, double *v, double *r) {
r[0] = determinant_2(ul1], ul2], v[1], vI[2]);
r[1] = -1 * determinant_2(ul[0], ul2], v[0]l, v[2]);
r[2] = determinant_2(ul0], u[1], v[0], vI[1]);

¥

//Multiplies the vector a by the scalar k, storing back in a
void scalar_mult(double k, double *a) {

a[0] *= k; al1]l *= k; a[2] *= k;
¥

//Finds the circumcentre of *tet
void circumcentre_sphere(Tetrahedron *tet) {
double r;
double volume; //Will hold scaled volume
double t[3], ul3], v[3]; //Want to translate tet->v[3] to the origin
double uxv[3], vxt[3], txul3]; //Will hold cross products
vector_subtraction(pO(tet->v[0]), pil(tet->v[0]), p2(tet->v[0]),
pO(tet->v[3]), pl(tet->v[3]), p2(tet->v[3]), t);
vector_subtraction(pO(tet->v[1]), pi(tet->v([1]), p2(tet->vI[1]),
pO(tet->v[3]), pl(tet->v[3]), p2(tet->v[3]), u);
vector_subtraction(pO(tet->v[2]), pil(tet->v[2]), p2(tet->v[2]),
pO(tet->v[3]), pl(tet->v[3]), p2(tet->v[3]), v);
//norms are really the norms squared

double t_norm = norm_sq(t);
double u_norm = norm_sq(u);
double v_norm = norm_sq(v);

cross_product(u, v, uxv);
cross_product (v, t, vxt);
cross_product(t, u, txu);

volume = tetrahedron_determinant (tet);

r = (t_norm * uxv[0]) + (u_norm * vxt[0]) + (v_norm * txul[0]);
tet->circum[0] = pO(tet->v[3]) + (r / (2 * volume));

r = (t_norm * uxv[1]) + (u_norm * vxt[1]) + (v_norm * txul[1]);
tet->circum[1] = pl(tet->vI[3]) + (r / (2 * volume));

r = (t_norm * uxv[2]) + (u_norm * vxt[2]) + (v_norm * txul[2]);
tet->circum[2] = p2(tet->vI[3]) + (r / (2 * volume));

}

42

line



872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967

969
970

//Computes the circumcentre of face t,

storing in cc -

is coplanar with t

void circumcentre_circle(Face t, double *cc) {

double a[3], b[3], c[3]; //Want to translate t->v[2] to the origin

double axb[3], cxaxb[3]; //Will hold cross products

vector_subtraction(p0(t.v[0]), p1(t.v[0]), p2(t.vI[0]),
po(t.v[2]), p1(t.vI[2]), p2(t.vI[2]), a);

vector_subtraction(pO(t.v[1]), pi(t.v[1]), p2(t.v[1]),
po(t.v[2]), pi(t.v[2]), p2(t.vI[2]), b);

cross_product(a, b, axb);

//Norms are really the norm squared

double a_norm = norm_sq(a);

double b_norm = norm_sq(b);

double axb_norm = norm_sq(axb);

scalar_mult (a_norm, b);

scalar_mult (b_norm, a);

vector_subtraction(b[0], b[1], b[2], al0]l, al1l, al2] ,c);

cross_product(c, axb, cxaxb); // read cxaxb as c¢c x (a x b)

cc[0] = (cxaxb[0] / (2 * axb_norm)) + pO(t.v[2]);
cc[1] = (cxaxb[1] / (2 * axb_norm)) + pi(t.v[2]);
cc[2] = (cxaxb[2] / (2 * axb_norm)) + p2(t.v[2]);

}

//Finds all edges containing v in del,

storing in edges

and a pointer to

//a tetrahedron containing that edge is stored in tetras.

//Returns the number of edges found sharing v.
int find_all_edges(int v, Edge *edges,

DLL_NODE #*node = del->first;

int i, j;

int n;

int num_edges = 0;

Tetrahedron *t;

Edge e;

int new_edge;

while (node

NULL) {

t = node->data;
if ((¢->v[0] == v) || (t->v[1] == v) || (t->v[2] ==
if (t->v[0] == v) n = 0;
else if(t->v[1] == v) n = 1;
else if(t->v[2] == v) n = 2;
else n = 3;
e.v[0] = t->v[n];
for (j = 1; j < 4; ++j) {
new_edge = 1;
e.v[1] = t->v[(n + j) % 4]1;
for (i = 0; i < num_edges; ++i)

if (equal_edges (edges[i], e)) {
new_edge = 0;
¥
if (new_edge) {
if ((num_edges + 1) > *capacity) {
*capacity *= 2;
if (realloc (edges,
fprintf (stderr,
exit (-1);

*capacity * sizeof (Edge)
"ERROR: realloc failed\n

}

if (realloc(tetras,

fprintf (stderr, "ERROR: realloc failed\n
exit(-1);
}
tetras [num_edges] = t;
edges [num_edges++] = e;
}
}
}
node = node->next;

¥
return num_edges;

}

//find another point on the line ab, in direction ab,
void point_on_line(double *a, double *b, double *r) {
double min;

double d, e, f;

int i;

if (fabs(b[0] - a[0]) == 0) d = 100000;
else d = fabs(b[0] - al[0]);

if (fabs(b[1] - al[1]) == 0) e = 100000;
else e = fabs(b[1] - al1l);

if (fabs(b[2] - a[2]) == 0) £ = 100000;
else f = fabs(b[2] - al[2]);

min = d < e 7 d el

min = min < f ? min g

for (i = 0; i < 3; ++i) {

//find vector between a and b, scale

Tetrahedron x**tetras,

*capacity * sizeof (Tetrahedronx*))

int *capacity) {

(t->v[3] == v)) {

)
")

NULL) {

™) 8

storing in r

it and add back a

r[i] = (b[i] - alil) * (200 / min) + alil;
s
¥
//r will contain the indices of the faces in *t containg e
void faces_with_edge (Edge e, Tetrahedron *t, int *r) {
int i, j;
Face f;

int check;

int count =

for (j = 0;
f = t->f[j
check = 0;

0;
j o< 4; ++j) {
18

43



971 for (i = 0; i < 3; ++i) {

972 if ((£.v[i] e.v[0]) |l (£.v[i]l == e.v[1])) ++check;
973 }

974 if (check == 2) {

975 rlcount] = j;

976 ++count;

977 if (count == 2) break;

978 }

979 }

980 }

981

982 //Will see if point d forms a positively oriented tetrahedron with triangle f

983 double orientation_check(Face f, double #*d) {

984 double a[3], b[3], c[3];

985 a[0] = po(£f.v[0]) - d[0];

986 al1]l = p1(£f.v[0]l) - d[1];

987 al[2] = p2(£f.v[0]) - d[2];

988 b[0] = pO(£f.v[1]) - d[0];

989 b[1] = pi(£f.v[1]) - d[1];

990 b[2] = p2(f.v[1]) - d[2];

991 c[0] = po(f.v[2]) - d[o0];

992 cl[1] = pi(f.v[2]) - dl1];

993 c[2] = p2(f.v[2]) - d[2];

994 return determinant_3(a, b, c);

995 }

996

997 //Finds a point on the unbounded voronoi edge formed by Face f
998 //Which belongs to a tetrahedron with circumcentre a, storing the point in pg
999 void compute_unbounded_edge(Face f, double *a, Polygon_3D #*pg) {
1000 double cc[3], templ([3];

1001 double check;

1002 circumcentre_circle(f, cc);

1003 check = orientation_check(f, a);

1004 if (check == 0) {

1005 fprintf (stderr ,"Error: circumcentre lies on face of tetrahedron\n");
1006 fprintf (stderr,"Circumcentre is %1f %1f %1f\n", al0l, al1l, al21);
1007 fprintf (stderr,"Lying on face:\n");

1008 fprintf (stderr, "%1f %1f %1f\n", p0(f.v[0]), p1(f.v[0]1), p2(f.vI[0]1));
1009 fprintf (stderr, "%1f %1f %1f\n", p0(f.v[1]), p1i(f.vI[1]), p2(£f.vI[1]1));
1010 fprintf (stderr, "%1f %1f %1f\n", p0(f.v[2]), pi(f.v[2]), p2(£f.v[2]1));
1011 exit (-1);

1012 b

1013 //Depending on the orientation of the tetrahedron formed by f and a,
1014 //the necessary unbounded edge will point in different directions

1015 if (check > 0) point_on_line(a, cc, temp);

1016 else point_on_line(cc, a, temp);

1017 add_to_polygon(temp, pg);

1018 }

1019

1020 //Copies pgl into pg2, in reverse order of points.

1021 void copy._pg._reverse (Polygon_3D *pgl, Polygon_3D *pg2) {
1022 int i;

1023 double al3];

1024 for(i = ((pgl->num_items / 3) - 1); i >= 0; --i) {
1025 al0] = pgl->vI[3 * il;

1026 al[1] = pgl->vI[3 * i + 1];

1027 a[2] = pgl->vI[3 *x i + 2];

1028 add_to_polygon(a, pg2);

1029 b

1030 }

1031

1032 //Copies pgl into pg2

1033 void copy_pg(Polygon_3D *pgl, Polygon_3D xpg2) {
1034 int i;

1035 double al[3];

1036 for(i = 0; i < (pgl->num_items/ 3); ++i) {

1037 a[0] = pgl->v[3 * il;
1038 al1]l = pgl->vI[3 * i + 1];
1039 al2] = pgl->v[3 * i + 2];
1040 add_to_polygon(a, pg2);
1041 }

1042 }

1043

1044 //Finds the Voronoi face for Delaunay edge e in tetrahedron *start

1045 //This is associated to the polyhedron dual to the vertex labelled vertex.
1046 //The Voronoi face will the faceindexed by face_num in the polyhedron

1047 void voronoi_face(Tetrahedron #*start, Edge e,

1048 int vertex, int face_num, Polygon_3D *temp_pg) {
1049 Tetrahedron *current, *prev, *next;
1050 //Below will hold the 2 faces of a tetrahedron that share a certain edge.

1051 int faces[2], start_faces[2];
1052 int i = 0;

1053 Polygon_3D *pg;

1054 Face f;

1055 int done = 0;

1056

1057 //This is the face of the polygon that we are working with:
1058 pg = voro[vertex]->faces[face_num];

1059 if (start == NULL) {

1060 fprintf (stderr, "ERROR: started with NULL tetrahedron\n");
1061 exit (-1);

1062 i

1063 temp_pg->num_items = 0;
1064 add_to_polygon(start->circum, temp_pg);

1065 faces_with_edge (e, start, start_faces);

1066 while((i < 2) && !'domne) {//i == 0 first direction, i == 1 second direction
1067 prev = start;

1068 if (start->adj[start_faces[il] != NULL) {

1069 next = start->adj[start_faces[il];

44



1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168

wh

ile(next != start) {//Not returned to starting point
current = next;

if(i == 1) add_to_polygon(current->circum, pg);

else add_to_polygon(current->circum, temp_pg);
faces_with_edge(e, current, faces);

if (current->adj[faces[0]] != prev) {
if (current->adj[faces[0]] == NULL) {
f = current->f[faces[0]];
if (i == 1) compute_unbounded_edge(f, current->circum,
else {

compute_unbounded_edge (f, current->circum, temp_pg);
copy_pg_reverse (temp_pg, pg);

voro[vertex]->unbounded = 1;
break;
3
next = current->adj[faces[0]];
prev = current;
¥
else if (current->adj[faces([1]] == prev) {
fprintf (stderr, "ERROR: incorrect adjacency\n");
fprintf (stderr, "took face %d to start\n", i);
fprintf (stderr, "%p and %p should not be adjacent",
prev, current->adj[faces[1]]);

P8l

pgl;

exit(-1);
}
else {
if (current->adj[faces[1]] == NULL) {
f = current->f[faces[1]];
if(i == 1) compute_unbounded_edge (f, current->circum,
else {
compute_unbounded_edge (f, current->circum, temp_pg);
copy_pg_reverse (temp_pg, pg);
voro[vertex]->unbounded = 1;
break;
T
next = current->adj[faces[1]];
prev = current;
}
}
if (next == start) done = 1;
}
else {
f = start->flstart_faces[ill;
if (i == 1) compute_unbounded_edge(f, start->circum, pg);
else {
compute_unbounded_edge (f, start->circum, temp_pg);
copy_pg_reverse (temp_pg, pg);
voro[vertex] ->unbounded = 1;
&
++1i;
T
if (done) copy_pg(temp_pg, pg);
¥
//Computes the Voronoi diagram of input point set
void voronoi() {
int i, j;
int num_edges;
DLL_NODE *node;
int capacity = 200;
Polygon_3D *temp_pg = make_polygon (3000);
//edges stores each edge e with i as a vertice, and tetras stores a
//tetrahedron containing e, for each aforementioned edge.
Tetrahedron #**tetras = malloc(capacity * sizeof (Tetrahedronx));
Edge *edges = malloc(capacity * sizeof (Edge));
if ((edges == NULL) || (tetras NULL)){
fprintf (stderr, "%s\n", "ERRO Malloc failed");
exit (-1);
T
node = del->first;
while (node != NULL) { //Compute the circumcentres
circumcentre_sphere (node->data);
node = node->next;
¥
voro = malloc(num_points * sizeof (Polyhedronx*));
if (voro == NULL){
fprintf (stderr, "%s\n", "ERROR: Malloc failed");
exit (-1);
¥
for(i = 0; i < num_points; ++i) { //Compute Voronoi region
num_edges = find_all_edges(i, edges, tetras, &capacity);
voro[i]l = make_polyhedron(num_edges);
for(j = 0; j < num_edges; ++j) { //Compute Voronoi face
voronoi_face(tetras[j], edges[jl, i, j, temp_pg);
}
¥
free(temp_pg);
}
//Prints the input points to a file
void print_points() {
int i;
FILE *file;

45



1169 if ((file = fopen("Logs/Points_3D.txt","w")) == NULL) {
1170 fprintf (stderr, "File not openable \n");

1171 exit(-1);

1172 ¥

1173 fprintf (file, "%d\n", num_points);

1174 for (i = 0; i < num_points; ++i) {

1175 fprintf (file, "%1f %1f %1f\n", pO(i), p1(i), p2(i));
1176 b

1177 if (fclose(file) == EOF) {

1178 fprintf (stderr, "Couldn’t close file");

1179 exit (-1);

1180

1181 }

1182

1183 //Prints the voronoi diagram to a file

1184 void print_voronoi () {

1185 int i, j, k;

1186 FILE xfile;

1187 if ((file = fopen("Logs/Voro_3D.txt","w")) == NULL) {
1188 fprintf (stderr, "File not openable \n");

1189 exit (-1);

1190 b

1191 Polygon_3D * pg;

1192 for(i = 0; i < num_points; ++i) {

1193 if (voro[i]l->unbounded == 0) fprintf(file, "*****Bounded ");
1194 else fprintf (file, "#***x*xUnbounded ");

1195 fprintf (file, "Polyhedron %d follows :*****\n", i);
1196 for(j = 0; j < voro[il->num_faces; ++j) {

1197 pg = vorol[il->faces[j];

1198 fprintf (file, "Face number %d:\n", j);

1199 for(k = 0; k < (pg->num_items / 3); ++k) {

1200 fprintf (file,"%1f %1f %1f\n",

1201 pg->v[3 * kl, pg->vI[3 * k + 1], pg->v[3 * k + 2]);
1202 }

1203 fprintf (file, "\n");

1204 }

1205 ¥

1206 if (fclose(file) == EOF) {

1207 fprintf (stderr, "Couldn’t close file");

1208 exit (-1);

1209 s

1210 }

1211

1212 //Finds a bounding box for the input points

1213 void bounding_box () {

1214 int i;

1215 bmin [0] = bmin[1] = bmin[2] = 0;

1216 bmax [0] = bmax[1] = bmax[2] = 0;

1217 for (i = 0; i < num_points; ++i) {

1218 if (bmin[0] > p0(i)) bmin[0] = pO(i);

1219 else if (bmax[0] < p0(i)) bmax[0] = p0O(i);

1220 if (bmin[1] > p1(i)) bmin[1] = p1(i);

1221 else if (bmax[1] < p1(i)) bmax[1] = p1(i);

1222 if (bmin[2] > p2(i)) bmin[2] = p2(i);

1223 else if (bmax[2] < p2(i)) bmax[2] = p2(i);

1224 ¥

1225 bmin [0] -= 0.5; bmax[0] += 0.5;

1226 bmin[1] -= 0.5; bmax[1] += 0.

1227 bmin[2] = -fabs(bmax[2]) - 1.5; bmax[2] = fabs(bmin[2]) + 0.5;
1228 glMatrixMode (GL_PROJECTION); // To operate on the Projection matrix
1229 glloadIdentity ();

1230 glOrtho (bmin [0], bmax[0],

1231 bmin [1], bmax[1],

1232 bmin[2], bmax[2]);

1233 }

1234

1235 //This draws the Delaunay tetrahedrilisation with colours.
1236 void draw_tetrahedrons () {

1237 int i = 0;

1238 int j;

1239 DLL_NODE *node;

1240 Face f;

1241

1242 glPolygonMode ( GL_FRONT_AND_BACK, GL_FILL );

1243 glBegin (GL_TRIANGLES) ;

1244 node = del->first;

1245 while (node != NULL) {

1246 glColor4d (color[3 * i], color[3 * i + 1], color([3 * i + 2], 0.5);
1247 for (j = 0; j < 4; ++j) {

1248 f = node->data->f[j];

1249 glVertex3d(p0(£f.v[0]), p1(f.v[0]), p2(f.v[0]1));
1250 glVertex3d(p0(f.v[11), p1(f.v[1]), p2(f.vI[1]1));
1251 glVertex3d(p0(f.vI[2]1), pi(f.v[2]), p2(f.v[2]));
1252 }

1253 node = node->next;

1254 aral g

1255 }

1256 glEnd () ;

1257

1258

1269 //This draws a blue mesh of the delaunay tetrahedrilisation
1260 void draw_tetrahedron_mesh() {

1261 DLL_NODE *node;

1262 int i;

1263 double a, b, c;

1264 Face f;

1265

1266 glPolygonMode ( GL_FRONT_AND_BACK, GL_LINE );

1267 glBegin (GL_TRIANGLES) ;

46



1268 a=20.1, b =20.3, c =0.6;
1269 node = del->first;

1270 while (node != NULL) {

1271 glColor4d(a, b, c, 0.5);

1272 for (i = 0; i < 4; ++i) {

1273 f = node->data->f[i];

1274 glVertex3d (p0(f.v[0]1), pi(f.v[0]), p2(f.v[0]));
1275 glVertex3d (pO(f.v[1]), pi(f.v[1]), p2(f.v([1]));
1276 glVertex3d (p0(f.v[2]), pi(f.v[2]), p2(f.v([2]));
1277 b

1278 node = node->next;

1279

1280 glEnd () ;

1281 }

1282

1283 //This draws the original points in yellow
1284 void draw_points(int color_var, int cull_on) {
1285 int i;

1286

1287 glBegin (GL_POINTS) ;

1288 if (color_var == 0)

1289 glColor3d(1.0,1.0,1.0);

1290 else

1291 glColor3d(1.0,1.0,0.0);

1292 for (i = 0; i < num_points; ++i) {
1293 if (! (cull_on && voro[il->unbounded))
1294 glVertex3d (p0(i), p1(i), p2(i));
1295

1296 glEnd ) ;

1297 }

1298

1299 //Draws the Voronoi diagram in colour. If cull_on unbounded regions are removed.
1300 void draw_voronoi(int cull_on) {

1301 int i, j, k;

1302 Polygon_3D * pg;

1303 for(i = 0; i < num_points; ++i) {

1304 if (! (cull_on && voro[i]->unbounded)) {

1305 glColor4d(color[3 * i], color[3 * i + 1], color[3 * i + 2], 0.5);
1306 glPolygonMode (GL_FRONT_AND_BACK, GL_FILL);

1307 for(j = 0; j < voro[il->num_faces; ++j) {

1308 pg = voro[il->faces[j];

1309 glBegin (GL_POLYGON) ;

1310 for(k = 0; k < (pg->num_items / 3); ++k) {

1311 glVertex3d(pg->vI[3 * k], pg->v[3 * k + 1], pg->v[3 * k + 2]);
1312 ¥

1313 glEnd ) ;

1314 ¥

1315 }

1316 ¥

1317 }

1318

1319 //Draws the Voronoi diagram in mesh. If cull_on unbounded regions are removed.
1320 void draw_voronoi_mesh(int cull_on) {

1321 int i, j, k;

1322 Polygon_3D * pg;

1323 for(i = 0; i < num_points; ++i) {

1324 if (! (cull_on && voro[il->unbounded)){

1325 glColor3d (1.0, 1.0, 1.0);

1326 glPolygonMode (GL_FRONT_AND_BACK, GL_LINE);
1327 for(j = 0; j < voro[il->num_faces; ++j) {
1328 pg = voro[il->faces[j];

1329 glBegin (GL_POLYGON) ;

1330 for(k = 0; k < (pg->num_items / 3); ++k) {
1331 glVertex3d(pg->v[3 * k], pg->v[3 * k + 1], pg->v[3 * k + 2]);
1332 }

1333 glEnd () ;

1334 }

1335 ¥

1336 ¥

1337 }

1338

1339 //Below are functions for moving the figure around
1340 void rotate_x_up() {
1341 r_x += 2.0;

1342 fmod (r_x, 360);

1343

1344

1345 void rotate_x_down() {
1346 r.x -= 2.0;

1347 fmod (r_x, 360);

1348 }

1349

1350 void rotate_y_up() {
1351 r.y += 2.0;

1352 fmod (r_y, 360);

1353 }

1354

1355 void rotate_y_down() {
1356 r.y -= 2.0;

1357 fmod (r_y, 360);

1358 }

1359

1360 void zoom_in() {

1361 zoom *= 1.05;

1362

1363

1364 void zoom_out () {

1365 zoom /= 1.05;

1366 }

47



1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465

void tumbling() {
if (tumble_on) {
tumble += 1.2;
fmod (tumble, 360);
#ifdef _WIN32
Sleep (50) ;
#else
sleep (0.03);
#endif
glutPostRedisplay ();
}
}

//Displays the results graphically

void display() {
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glMatrixMode (GL_MODELVIEW) ;
glloadIdentity ();

//glTranslated (0.0, 0.0, -max -4.0);
glRotated (tumble, 0.0, 1.0, 0.0);
glRotated (tumble, 1.0, 1.0, 1.0);
glRotated(r_x, 1.0, 0.0, 0.0);
glRotated(r_y, 0.0, 1.0, 0.0);
glScaled(zoom, zoom, zoom);
if (p_on)

draw_points (0, cull_on);
if (state == 0) draw_points (0, 0);
else if (state == 1) draw_tetrahedrons();
else if (state == 2)

draw_voronoi(cull_on);
else if (state == 3) {

if (d_on)

draw_tetrahedron_mesh () ;
if (v_on)

draw_voronoi_mesh(cull_on);
¥
glutSwapBuffers ();
tumbling () ;
¥

//Initiliase our display settings
void init () {
glMatrixMode (GL_PROJECTION) ;
glClearColor (0.0f, 0.0f, 0.0f, 1.0f); //Black background
glPointSize (3.00);
//Enable Depth testing:
glClearDepth (1.0£);
glEnable (GL_DEPTH_TEST) ;
glDepthFunc (GL_LEQUAL) ;
//Making things look nicer
glHint (GL_LINE_SMOOTH_HINT, GL_NICEST);
glHint (GL_POLYGON_SMOOTH_HINT, GL_NICEST);
glHint (GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
glEnable (GL_BLEND) ;
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}

//reshape window on Initiliase, and reshape.
void reshape (GLsizei width, GLsizei height) {
glClearColor ( 0,0,0,0 );
glClear ( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Set the viewport to cover the new window
glViewport (0, 0, width, height);
glMatrixMode (GL_PROJECTION); // To operate on the Projection matrix
glLoadIdentity (); // Reset
//Establish clipping planes.
glOrtho (bmin [0], bmax[0], bmin[1], bmax[1], -bmin[2], -bmax[2]);
¥

void new_clip() {
glClearColor (0,0,0,0);
glClear ( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glutSwapBuffers () ;
printf ("Current clip planes are:\n");
printf ("x: left %1f, right %1f\n", bmin[0], bmax[0]);
printf ("y: bottom %1f, top %1f\n", bmin[1], bmax[1]);
printf("z: near Y%1f, far %1f, negative z is into screen\n",
bmin [2], bmax[2]);
printf ("Please define new clipping planes\n");
printf ("Please enter your new x clip co-ordinates as: left right\n");
scanf ("%1f %1f", &bmin[0], &bmax[0]);
printf ("Please enter your new y clip co-ordinates as: bottom top\n");
scanf ("%1f %1f", &bmin[1], &bmax[1]);
printf ("Please enter your new z clip co-ordinates as: near far\n");
scanf ("%1f %1f", &bmin[2], &bmax[2]);
glMatrixMode (GL_PROJECTION); // To operate on the Projection matrix
glLoadIdentity ();
glOrtho (bmin [0], bmax[0], bmin[1], bmax[1], -bmin[2], -bmax[2]);
}

//A looping keyboard function
void kbd ( unsigned char key, int x, int y ) {
switch ( key ) {
case ’w’:
rotate_x_down () ;
glutPostRedisplay () ;
break;

48



1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
15632
1533
1534
15635
1536
1837
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564

case ’s’:
rotate_x_up();
glutPostRedisplay () ;
break;

case ’a’:
rotate_y_down();
glutPostRedisplay () ;
break;

case ’d’:
rotate_y_up();
glutPostRedisplay ();
break;

case ’q’:
zoom_in () ;
glutPostRedisplay ();
break;

case ’e’:
zoom_out () ;
glutPostRedisplay () ;
break;

case 27: //ESC key
exit (0) ;
break;

case ’p’:
state = 0;
glutPostRedisplay ();
break;

case ’t’:
state = 1;
glutPostRedisplay ();
break;

case ’v’:
state = 2;
glutPostRedisplay ();
break;

case ’c’:
state = 3;
glutPostRedisplay ();
break;

case ’r’:
tumble_on = 1 - tumble_on;
glutPostRedisplay ();
break;

case ’b’:
cull _on = 1 - cull_on;
glutPostRedisplay ();
break;

case ’P’:
p_on = 1 - p_on;
glutPostRedisplay();
break;

case ’'T’:
d_on = 1 - d_on;
glutPostRedisplay ();
break;

case ’V’:
v_on = 1 - v_on;
glutPostRedisplay () ;
break;

case ’n’:
new_clip();
glutPostRedisplay () ;
break;

case ’N’:
bounding_box () ;
glutPostRedisplay ();
break;

default:

fprintf (stderr,"key (%c:%x) is not bound\n",
fprintf (stderr,"Bound keys are ESC to quit,"

key, key);

" p for points only, P to draw points over objects\n"
"t for tetrahedrilisation - Delaunay, "

"v for Voronoi diagram \n"

"n for new clip planes, N to reset clip planes\n"

"b to cull unbounded polyhedrons,
"Camera movement with w, a,

r for random rotation\n"
Zoom with q, e\n"

"c to enter multiple drawings mode - In this mode:\n"

"V - Voronoi, T - Delaunay\n");

break;

49



1565

1666 //Reads the input points either from stdin or reads them from a file
1667 //if from_file, then the file read from string input

1568 void read_points(int from_file, char #*input) {

1569 int i;

1570 FILE *file;

1571 if (! from_file) {

1572 printf ("Enter how many points you want to enter\n");
1573 scanf ("%d", &num_points);

1574 p = calloc(3 * (num_points + 4), sizeof (double));

1575

1576 printf ("Please enter your 3D points separated by spaces\n");
1577

1578 for (i = 0; i < num_points; ++i)

1579 scanf ("%1f %1f %1f", &pl[3 * il, &pl[3 * i + 11, &pl[3 * i + 21);
1580 }

1581

1582 else {

1583 if ((file = fopen(input, "r")) == NULL) {

1584 fprintf (stderr, "File not openable \n");

1585 exit (-1);

1586 ¥

1587 fscanf (file, "%d\n", & num_points);

1588 fprintf (stderr, "number of points is %d\n", num_points);
1589 p = malloc(3 * (num_points + 4) * sizeof (double));

1590 if (p == NULL) {

1591 fprintf (stderr, "ERROR: malloc failed\n");

1592 exit(-1);

1593 }

1594

1595 for (i = 0; i < num_points; ++i )

1596 fscanf (file, "%1f %1f %1f\n", &pl[3 * il, &pl3 * i + 1], &pl[3 * i + 2]);
1597

1598 if (fclose(file) == EOF){

1599 fprintf (stderr,"Couldn’t close the file\n");

1600 exit (-1);

1601 }

1602 }

1603 }

1604

1605 //Produces num_p random input points

1606 void randomise (int num_p) {

1607 int i;

1608 int a, b, c;

1609 int divide;

1610

1611 divide = ceil(0.01 * (num_p/2.0));

1612 if (divide > 10) divide = 10;

1613 p = malloc(3 * (num_points + 4) * sizeof (double));

1614 if (p == NULL) {

1615 fprintf (stderr, "ERROR: malloc failed\n");

1616 exit (-1);

1617 }

1618 for(i = 0; i < num_p; ++i) {

1619 a = rand() % 2;

1620 b = rand() % 2;

1621 ¢ = rand(O) % 2;

1622 if (a == 0)

1623 a = -1;

1624 if (b

1625

1626

1627 8

1628 pl3 * il = a * (double)(rand()) / (RAND_MAX/divide);
1629 pl3 * i + 11 = b * (double)(rand()) / (RAND_MAX/divide);
1630 pl3 * i + 2] = ¢ * (double)(rand()) / (RAND_MAX/divide);
1631 }

1632 }

1633

1634 //Allocates memory to globals and calls funtions
1635 int main(int argc, char x*argv) {

1636 clock_t ti;

1637 int i;

1638 int max;

1639 int from_file = 0;

1640 int random_on = 0;

1641 time_t t;

1642 int num_tetras;

1643

1644 #ifdef _WIN32

1645 srand ((unsigned) time (&t));

1646 //srand ((long)1);
1647 #else

1648 srand48 ((unsigned) time (&t));
1649 #endif
1650

1651 //check how prog should be run
1652 for (i = 0; i < argc; ++i) {

1653 if (stremp (argv[il, "-file") == 0) {
1654 //Read from a file.

1655 from_file = 1;

1656 ¥

1657 if (strcmp (argv[il, "-debug") == 0) {
1658 //Turn on logs and stderr messages.
1659 debug = 1;

1660 ¥

1661 if (strcmp (argv[i], "-random") == 0) {
1662 //Create a random set of points.
1663 random_on = 1;

50



1664 ¥

1665 if (strcmp (argv[i], "-help") == 0) {

1666 fprintf (stderr,

1667 "This is a program to compute and display the following:\n"
1668 "The Voronoi diagram and"

1669 " Delaunay tetrahedrilisation of 3D points.\n"

1670 "Run the program to enter points through stdin.\n"

1671 "Run with \"-file\" {filename} to give the program a file. File input format is:
1672 "3\n0.0 0.5 10\n-0.3 0.8 -5\n1.6 -0.6 0.0\n"

1673 "That is, number of points followed by the points.\n"

1674 "Points are separated by newlines,"

1675 " co-ordinates are separated by spaces.\n"

1676 "\"-random\" followed by a space and the number of points will"
1677 " run the program on that number of random points.\n"

1678 "\"-debug\" will produce logs of running.\n"

1679 "One last note: the time taken with stdin input is wrong.\n");
1680 exit (0);

1681 ¥

1682 ¥

1683 if (random_on) {

1684 num_points = atoi(argvlargc - 11);

1685 randomise (num_points) ;

1686 X

1687 else {

1688 read_points(from_file, argvl[argc - 11);

1689 ¥

1690 //Computing the Delauany triangulation

1691 ti = clock();

1692 del = make_list();

1693 bowyer_watson () ;

1694 ti = clock() - tij;

1695 double time_taken = ((double)ti)/CLOCKS_PER_SEC;

1696 fprintf (stderr, "Delaunay completed - took extra %1f seconds\n", time_taken);
1697
1698 voronoi () ;

1699 ti = clock() - tij;
1700 time_taken = ((double)ti)/CLOCKS_PER_SEC;

1701 fprintf (stderr, "Voronoi completed - took extra %1f seconds\n", time_taken);
1702

1703 if (debug) {

1704 print_points ();

1705 print_DLL (del);

1706 print_voronoi();

1707

1708

1709 num_tetras = list_length(del);

1710 max = num_tetras < num_points ? num_points : num_tetras;
1711 color = calloc(3 * max, sizeof (double));

1712 //Create the colors
1713 for (i = 0; i < max; ++ i) {
1714 #ifdef _WIN32

1715 color [3*i] = (double)(rand()) / RAND_MAX;

1716 color [3*xi + 1] = (double) (rand()) / RAND_MAX;
1717 color [3*i + 2] = (double)(rand()) / RAND_MAX;
1718 #else

1719 color [3*i] = drand48();

1720 color [3*i + 1] = drand48(Q);

1721 color [3*i + 2] = drand48(Q);

1722 #endif

1723

1724

1725 //Display here

1726 bounding_box () ;

1727 glutInit (&argc, argv);

1728 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
1729 glutInitWindowSize (480,480);
1730 glutInitWindowPosition (100,100);
1731 glutCreateWindow ("Del");

1732 glutDisplayFunc (display);

1733 glutKeyboardFunc (kbd) ;

1734 glutReshapeFunc (reshape);

1735 init Q) ;

1736 glutMainLoop () ;

1737

1738 //Clean up

1739 empty_dll(del);

1740 free(p);

1741 free(color);

1742 return 0;

1743 }

Two Dimensional C Code Snippets

//Same Header files needed

//Global variables

double #*p; //p for points - our array of points

int num_points; //Will hold the number of points in consideration
int GRID_SIZE; //Order of hilbert curves;

int BOX_SIZE; //size of viewing box

DLL *del; //Stores Delaunay triangulation

Polygon_2D **voro; //Stores the voronoi diagram

© N O WN

11 /**************************************************************************
12 These data structures have vertices as integer labels, which will pull

13 from an array of points when actual co-ordinates are needed.

14 **************************************************************************/

o1



15 typedef struct Edge {

16 int from, to; //2 vertices as integer labels

17 '} Edge;

18

19 typedef struct Triangle {

20 int vert_1, vert_2, vert_3; //Three vertices of triangle as integer labels
21 Edge edge_1, edge_2, edge_3; //Three edges of the triangle

22 //adjacent [i] is pointer to the triangle sharing edge_i+1 - NULL if none exist
23 struct Triangle* adjacent [3];

24 double circum[2]; //Circumcentre of the triangle

25 int checked; //Has the triangle been checked in step j of Bowyer Watson?
26 } Triangle;

27

28 struct Polygon_2D { //An array of vertices, and a boolean unbounded
29 doublex* v;

30 int capacity;
31 int num_items;
32 int unbounded;
33 };

34

36 //Make a ploygon with capacity cap

36 Polygon_2D #*make_polygon(int cap) {

37 Polygon_2D *pg = malloc(sizeof (Polygon_2D));
38 if (pg == NULL) {

39 fprintf (stderr, "ERROR: malloc failed\n");
40 exit (-1);
41 ¥

42 pg->capacity = cap;
43 pg->v = malloc(sizeof (double) * pg->capacity);

44 if (pg->v == NULL) {

45 fprintf (stderr, "ERROR: malloc failed\n");
46 exit (-1);

47 }

48 pg->num_items = 0;

49 pg->unbounded = 0;
50 return pg;
51 }

53 //Add point (al, a2) to polygon *pg
54 void add_to_polygon(double al, double a2, Polygon_2D *pg) {
55 if ((pg->num_items + 2) > pg->capacity) {

56 pg->capacity *= 2;

57 pg->v = realloc(pg->v, sizeof (double) * pg->capacity);
58 if (pg == NULL) {

59 fprintf (stderr, "ERROR: realloc failed\n");
60 exit (-1);

61

62 }

63 pg—)v[pg—>num_items++] = alj;

64 pg—>v[pg—>num_items++] = a2;

65 }

66

67 //Calculates the determinant of the 3x3 matrix with rows a,b,c
68 double determinant (double *a, double *b, double *c) {
69 return a[0] * (b[1] * c[2] - b[2] * c[1]) +

70 a1l * (b[2] * c[0] - b[0] * c[2]) +
71 a[2] * (b[0] * c[1] - b[1] * c[0]);
72}

73

74 //Forms a 3x3 matrix using the vertices of the triangle and homogenising 1
75 //and then computes the determinant of this matrix.
76 double triangle_determinant(Triangle *t) {

77 double al[3];

78 double b[3];

79 double c[3];

80 al0] = 1;

81 a[1] = p[2 * t->vert_1];

82 al2] = p[2 * t->vert_1 + 1];

83 b[0] = 1;

84 b[1] = p[2 * t->vert_2];

85 b[2] = p[2 * t->vert_2 + 1];

86 c[0] = 1;

87 cl[1] = p[2 * t->vert_3];

88 c[2] = p[2 * t->vert_3 + 1];

89 return determinant(a, b, c¢);

90 1}

92 //Creates a postively oriented triangle with the vertices given as parameters
93 Triangle* make_triangle(int vert_1, int vert_2, int vert_3) {
94 Trianglex t = malloc(sizeof (Triangle));

95 if (t == NULL) {

96 fprintf (stderr, "ERROR: malloc failed\n");
97 exit (-1);

98 }

99 t->vert_1 = vert_1;
100 t->vert_2 = vert_2;
101 t->vert_3 = vert_3;

102 double check = triangle_determinant(t);

103 //check should be greater than O is the triangle is counter-clockwise
104 //reversing labels reverses the sign of check - and thus orientation
105 if (check < 0) {

106 t->vert_2 = vert_3;

107 t->vert_3 = vert_2;

108 ¥

109 else if (check == 0) {

110 fprintf (stderr,

111 "Error: %d, %d, %d are collinear. Tried to make triangle\n",
112 t->vert_1, t->vert_2, t->vert_3);

113 exit (-1);

52



114 ¥

115 t->edge_1.from = t->vert_1;

116 t->edge_1.to = t->vert_2;

117 t->edge_2.from = t->vert_2;

118 t->edge_2.to = t->vert_3;
t

119 t->edge_3.from t->vert_3;

120 t->edge_3.to = t->vert_1;

121

122 t->adjacent [0] = t->adjacent[1] = t->adjacent[2] = NULL;
123 t->circum[0] = t->circum[1] = 0;

124 t->checked = -1;

125

126 return t;

127 }

128

129/ sk ok sk ok ko ok ok kKKK oK oK ok ok ok ok o o K K KKK KKK R R ok oK oK ok ok R R K KKK KK KKK R ok ok ok ok o o K KKK K KKK K ok ok o o o o o K K
130 In the bowyer_watson algorithm we start by using a big triangle which

131 surrounds all of the points in consideration.

132 This big triangle must be removed at the end of the algorithm, so this

133 function checks if Triangle *t shares a vertex with this big triangle -

134 the big triangle has vertices n, n + 1 and n + 2

L35 koo ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o o o o o K K K K KoK oK oK oK ok ok ok ok o o o K K K K K oK oK oK oK ok ok ok ok ok ok o o o K K K K K ok ok ok ok ok ok ok o o ok ok o ok /)
136 int shares_vertex_bigt(Triangle *t, int n) {

137 int b = t->vert_1;

138 if ((b n) |l (b n+ 1) || (b ==n+ 2))
139 return 1;

140

141 b = t->vert_2;

142 if ((b ==mn) || (b ==n+ 1) || (b ==n + 2))
143 return 1;

144

145 b = t->vert_3;

146 if ((b n) |l (b Il (b ==n + 2))
147 return 1;

148

149 return O;

150 }

151

162 //Checks if el == e2 (edges are not directional)

1, Edge e2){
2

153 int equal (Edge e

154 if (el.to == e2.to && el.from == e2.from)
155 return 1;

156 if (el.to == e2.from && el.from == e2.to)
157 return 1;

158 return O;

159 }

160

161 //The stucture to hold triangle pointers will be a DLL (Doubly Linked List)
162 //The functions on the DLL are the same as 3D,

163 //but with triangle pointers instead of tetrahedron pointers.
164 typedef struct DLL_NODE {

165 Triangle *data;

166 struct DLL_NODE *next, *prev;

167 } DLL_NODE;

168

169 struct DLLA{

170 DLL_NODE *first, *last;

171 };

172

173 //The code for a push down Edge stack and Triangle pointer Stack
174 //Is left out here, same functions as in the 3D case

175 //Stack is an edge stack

176 typedef struct Stack{

177 int top_index;

178 int capacity;

179 Edge *item;

180 } Stack;

181

182 typedef struct Triangle_Stackf{
183 int top_index;

184 int capacity;

185 Triangle **xitem;

186 } Triangle_Stack;

187

188 //The code for Hilbert sorting follows
189 //rotate/flip a quadrant appropriately.
190 void rot(int quad, int *x, int *y, int w) {

191 int temp;

192 if (quad == 0) {

193 temp = *x;

194 *X = *xy;

195 *y = temp;

196 ¥

197 else {
198 Xy = Xy - w;

199 ¥

200 else if (quad == 2) {
201 *X = kX - W,

202 *y = *y - w;

203 ¥

204 else {

205 temp = *x;

206 *x = w - xy - 1;
207 *y = w * 2 - temp - 1;
208 ¥

209 }

210

211 //Converts a 2D integer point (x,y) to a 1D distance, with grid resolution n
212 int xy2d (int n, int x, int y) {

23



213 int r;

214 int max;

215 int w;

216 int temp;

217 int quad;

218 int rx, ry, d = 0;
219 if (x >= y) max =
220 else max = y;

221 r = floor(log(max)/log(2)) + 1;
222 w = (int)pow(2, r - 1);

223 if ((n % 2) !'= (r % 2)) {

x5

224 temp = Xx;

225 X =y

226 y = temp;

227 }

228 while (r != 0) {

229 rx = (x & w) > 0;

230 ry = (y & w) > 0;

231 quad = (3 * rx) ~ ry;
232 d += w * w * quad;
233 rot (quad, &x, &y, w);
234 r=r1r - 1;

235 w o= w/2;

236 b

237 return d;

238 }

239

240 //Crudely converts a double to an int.

241 int to_int (double p) {

242 return (int) ((p + BOX_SIZE) * 100);

243 }

244

245 //Comparison function to be used to sort the array p
246 int cmpfunc (const void * a, const void * b) {

247 return (xy2d(GRID_SIZE, to_int(p[2 * *(intx)al),

248 to_int (p[2 * *(int*)a + 11)) -
249 xy2d (GRID_SIZE, to_int(p[2 * *(int*)bl),

250 to_int (p[2 * *(int*)b + 1]1)));
251 }

252

263 //Calls gsort on an array of indexes. These indexes will sort p.
254 void hilbert_sort(int *indexes) {

255 qsort (indexes, num_points, sizeof (int), cmpfunc);

256

257

2568 //Function to sort the global array p with Hilbert sorting.
259 void sort () {

260 int 1i;

261 int *indexes;

262 int check;

263 double max = 0;

264 double temp;

265 double *temp_array;

266

267 indexes = malloc(num_points * sizeof (int));
268 if (indexes == NULL) {

269 fprintf (stderr, "ERROR: malloc failed\n");
270 exit (-1);

271 b

272 for (i = 0; i < num_points; ++i) {

273 indexes[i] = i;

274 temp = fabs(p[2 * il);

275 if (temp > max) max = temp;

276 temp = fabs(p[2 * i + 11);

277 if (temp > max) max = temp;

278 }

279

280 max = ceil (max);

281 BOX_SIZE = (int)max;

282 GRID_SIZE = 256;

283 check = BOX_SIZE * 2 * 100;

284 GRID_SIZE = floor (log(check)/log(2)) + 1;

285

286 hilbert_sort (indexes);

287 temp_array = malloc(2 * (num_points + 3) * sizeof (double));
288 if (temp_array == NULL) {

289 fprintf (stderr, "ERROR: malloc failed\n");

290 exit (-1);

291

292 for(i = 0; i < num_points; ++i) {

293 temp_array[2 * i] = p[2 * indexes[i]];

294 temp_array[2 * i + 1] = p[2 * indexes[i] + 1];
295 }

296 free(indexes) ;

297 free(p);

298 p = temp_array;

299 }

300

301 //square the double d

302 double sq (double d) {

303 return d * d;

304 }

305

306 //Checks if the point (d0,d1) lies inside the positively oriented
307 //triangle *Tri’s circumcircle.

308 int in_circle(Triangle *Tri, double d0, double di1) {
309 double al3], b[3], c[3];

310 al0] = p[2 * Tri->vert_1] - dO;

311 a[1] = p[2 * Tri->vert_1 + 1] - di;

54



312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

a[2] = sq(pl[2 * Tri->vert_1] - d0) +
sq(p[2 * Tri->vert_1 + 1] - di);

b[0] = p[2 * Tri->vert_2] - dO;

bl[1] = p[2 * Tri->vert_2 + 1] di;

b[2] = sq(p[2 * Tri->vert_2] - d0) +
sq(pl2 * Tri->vert_2 + 1] - di1);

c[0] = p[2 * Tri->vert_3] - dO;

c[1] = p[2 * Tri->vert_3 + 1] di;

c[2] = sq(pl[2 * Tri->vert_3] - d0) +
sq(p[2 * Tri->vert_3 + 1] - di);

if (determinant(a,b,c) <= 0)
return O;

else
return 1;

}

//Checks

if edge e is shared with a triangle in list.

//the search starts at node in list,

and moves backwards,

then does forwards.

int shared_edge_in_graph(Edge e,

DLL_NODE *node,

DLL *1list) {

DLL_NODE *temp;

temp = node->prev;
while (temp != NULL) {
if (equal(e, temp->data->edge_1))
return 1;
else if (equal(e, temp->data->edge_2))
return 1;
else if (equal(e, temp->data->edge_3))
return 1;
temp = temp->prev;

¥

temp =
while (temp !=
if (equal(e,
return 1;
else if (equal(e,
return 1;
else if (equal(e,
return 1;
temp = temp->next;

node ->next;

NULL) {
temp->data->edge_1))
temp->data->edge_2))

temp->data->edge_3))

}

return O;

}

/3 ko ke sk sk sk sk ok ok sk ok sk sk sk ok ok kK ok sk sk ok ok sk ok o ok sk sk sk ok sk ke ok sk sk sk ok kK ok sk sk sk ok kK o ok ok sk ok ok ok sk o ok sk ok ok ok K ok sk ok ok ok K K ok ok ok ok K K

Recursively checks the neighbours of Triangle tri.
added to DLL bad and checked itself.
At each step,

If a neighbour is bad it is

Otherwise neighbour is marked as checked.
triangles are ignored that a have a checked value equal to run.

sk sk ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok sk ok ok ok ok s ok 3k ok ok o ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok 3k ok ok o ok ok ok ok ok ok ok sk ok ok ok ok ok ok 3k ok ok o ok ok ok ok ok k /)

void check_neighbours(Triangle *tri,
DLL_NODE *node;
Triangle *nbhr;

int run,

int i;
tri->checked = run;
for(i = 0; i < 3; ++i) {

nbhr = tri->adjacent[i];

//Check if the neighbour is actually a triangle

if (nbhr != NULL) {
//0nly check each triangle once
if (nbhr->checked < run) {

DLL *bad) {

if (in_circle(mbhr, p[2 * runl, p[2 * run + 11)) {

node = find_node (nbhr, del);
add_to_list (nbhr, bad);
remove_node (node, del);
check_neighbours (nbhr,
¥
else {
nbhr ->checked =
}

run, bad);

run;

}
¥
¥
}

//Checks if tri and nbhr match on e,

and if so updates tri’s adjacency

int find_matching_edge(Triangle *tri, Edge e, Triangle* nbhr) {

if (equal(tri->edge_1, e)) {

tri->adjacent [0] = nbhr;
return 1;

T

if (equal (tri->edge_2, e)) {
tri->adjacent [1] = nbhr;

return 1;

3

if (equal (tri->edge_3, e)) {
tri->adjacent [2] = nbhr;
return 1;

}

fprintf (stderr,"Found no match for an edge in a triangle\n");

return O;

}

410 /% s % ok sk ok ok ok ok ok ok ok ok ok ok ok K ok sk ok ok ok ok ok ok o ok ok ok ok 3 K ok ok ok 3 ok ok ok ok ok ok ok ok s K ok ok ok 3k K ok ok ok 3 ok sk ok ok ok ok ok ok o K ok ok ok 3k K ok ok ok kK K K

25



411 Checks if edge e is shared by any triangle in a search starting at node and
412 moving backwards. If it is, the triangle pointed to by node has

413 adjacent [edge_no] updated with the found triangle.

A4 ok ok ok ok ok okok ok ok ok ok ok ok ok o o K K K K KoK ok ok ok ok ok ok ok o o o o K K K K K K oK oK ok ok ok ok ok ok o o K K K K K oK ok oK ok ok ok ok o o o o o o K K K K K K Kok ok /
415 void find_adjacent_triangle_to_edge (Edge e, DLL_NODE #*node, int edge_no) {

416 DLL_NODE *comp = node->prev;

417

418 if (node->data->adjacent[edge_no] == NULL) {

419 while (comp != NULL) {

420 if (equal(e, comp->data->edge_1)) {

421 comp->data->adjacent [0] = node->data;

422 node->data->adjacent [edge_no] = comp->data;
423 break;

424 ¥

425 else if (equal(e, comp->data->edge_2)) {

426 comp->data->adjacent [1] = node->data;

427 node->data->adjacent [edge_no] = comp->data;
428 break;

429 ¥

430 else if (equal(e, comp->data->edge_3)) {

431 comp->data->adjacent [2] = node->data;

432 node->data->adjacent [edge_no] = comp->data;
433 break;

434 X

435 comp = comp->prev;

436 ¥

437 ¥

438 }

439

440 //Finds all adjacencies moving backwards in a list starting at start
441 void find_adjacent (DLL_NODE *start) {

442 Edge edge;

443 DLL_NODE #*node;

444 node = start;

445 while (node != NULL) {

446 //check edge 1

447 edge = node->data->edge_1;

448 find_adjacent_triangle_to_edge (edge, node, 0);
449 //check edge 2

450 edge = node->data->edge_2;

451 find_adjacent_triangle_to_edge (edge, node, 1);
452 //check edge 3

453 edge = node->data->edge_3;

454 find_adjacent_triangle_to_edge (edge, node, 2);
455 node = node->prev;

456 }

457 '}

458

459 //Make all triangles which tri points to, point to NULL instead of back to tri

460 void delete_ties(Triangle x*tri) {

461 int i, j;

462 for(i = 0; i < 3; ++i) {

463 if (tri->adjacent[i] != NULL) {

464 for(j = 0; j < 3; ++j) {

465 if (tri->adjacent [i]l->adjacent [j] == tri) {
466 tri->adjacent [i]l->adjacent[j] = NULL;
467 break;

468 b

469 }

470 }

471 X

472 )

473

474 //This algorithm produces the Delaunay triangulation of our points
475 void bowyer_watson() {

476 int i;

477 Edge edge;

478 int shared_edge;

479 int found_bad;

480 Triangle *tri_1;

481 Triangle *tri_2;

482 DLL *bad = make_list();

483 DLL_NODE *node;

484 DLL_NODE *temp;

485 Stack *polygon = make_stack();

486 Triangle_Stack *border_triangles = make_tri_stack();

487

488 //Add big triangle vertices to array of points

489 pl[2 * num_points] = -100000;

490 p[2 * num_points + 1] = -100000;

491 p[2 * num_points + 2] = 100000;

492 p[2 * num_points + 3] = -100000;

493 pl2 * num_points + 4] = 0;

494 pl2 * num_points + 5] = 100000;

495

496 Triangle *big_tri = make_triangle(num_points, num_points + 1, num_points + 2);
497 add_to_list (big_tri, del);

498 for (i = 0; i < num_points; ++i) {

499 empty_d1l (bad) ;

500 node = del->first;

501 found_bad = 0;

502 while (! found_bad) { //Find one bad triangle

503 if (node NULL) {

504 fprintf (stderr ,"ERROR: Arithmetic error - found no bad triangle\n");
505 exit (-1);

506 ¥

507 if (in_circle(node->data, p[2 * i], pl[2 * i + 1])) {
508 add_to_list (node->data, bad);

509 remove_node (node, del);

56



510 found_bad = 1;

511 }

512 else {

513 node = node->next;

514 ¥

515 b

516 check_neighbours (bad->first->data, i, bad); //Find all bad triangles
517 node = bad->first;

518 while (node != NULL) {

519 //check edge 1

520 edge = node->data->edge_1;

521 shared_edge = shared_edge_in_graph(edge, node, bad);
522 if (! shared_edge) {

523 push(edge, polygon);

524 push_tri(node->data->adjacent [0], border_triangles);
525 ¥

526 //check edge 2

527 edge = node->data->edge_2;

528 shared_edge = shared_edge_in_graph(edge, node, bad);
529 if (! shared_edge) {

530 push (edge, polygon);

531 push_tri(node->data->adjacent [1], border_triangles);
532 ¥

533 //check edge 3

534 edge = node->data->edge_3;

535 shared_edge = shared_edge_in_graph(edge, node, bad);
536 if (! shared_edge) {

537 push (edge, polygon);

538 push_tri(node->data->adjacent [2], border_triangles);
539 }

540 node = node->next;

541 }

542 //Find the Delaunay cavity of the input point.

543 //The first run of our while loop is slighty different, so is separate
544 edge = top(polygon);

545 add_to_list (make_triangle (edge.from, edge.to, i), del);
546 node = del->first; //The different line - marks where new triangles start
547 tri_2 = top_tri(border_triangles);

548 if (tri_2 != NULL) {

549 tri_1 = del->first->data;

550 find_matching_edge(tri_1, edge, tri_2);

551 find_matching_edge (tri_2, edge, tri_1);

552 b

553 pop_tri(border_triangles);

554 pop (polygon);

555

556 while (!is_empty_stack (polygon)) {

557 edge = top(polygon);

558 add_to_list (make_triangle (edge.from, edge.to, i), del);
559 tri_2 = top_tri(border_triangles);

560 if (tri_2 != NULL) {

561 tri_1 = del->first->data;

562 find_matching_edge(tri_1, edge, tri_2);

563 find_matching_edge(tri_2, edge, tri_1);

564 }

565 pop_tri(border_triangles);

566 pop (polygon);

567

568 //Fill in adjacencies for newly added triangles.

569 find_adjacent (node);

570 b

571 node = del->first;

572 while (node != NULL){ //Remove ties with the super triangle
573 if (shares_vertex_bigt(node->data, num_points) == 1) {
574 temp = node;

575 node = node->next;

576 delete_ties (temp->data);

577 free (temp->data);

578 remove_node(temp, del);

579 ¥

580 else {

581 node = node->next;

582 ¥

583 ¥

584 //Clean up

585 empty_dll(bad);

586 free(bad);

587 free_stack(polygon);

588 free_tri_stack(border_triangles);

589 }

590

591 //Finds the circumcentre of triangle pointed to by t and stores it in result
592 void circumcentre(double *result, Triangle *t) {

593 double slope_1, slope_2, mid_x1, mid_x2, mid_y1l, mid_y2;
594 double x1 = p[2 * t->vert_1];

595 double x2 = p[2 * t->vert_2];

596 double x3 = p[2 * t->vert_3];

597 double y1 = p[2 * t->vert_1 + 1];

598 double y2 = p[2 * t->vert_2 + 1];

599 double y3 = p[2 * t->vert_3 + 1];

600 double temp;

601

602 //slight complication for slope O lines:
603 if(y1 == y2) {

604 temp = y2;

605 y2 = y3;

606 y3 = temp;

607 temp = x2;

608 x2 = x3;

57



609 x3 = temp;

610 ¥

611 else if(y3 == y2) {
612 temp = y2;

613 y2 = yi;

614 yl = temp;

615 temp = x2;

616 x2 = x1;

617 x1 = temp;

618 X

619

620 mid_x1 = (x1 + x2)
621 mid_x2 = (x2 + x3)
+
+

622 mid_yl = (y1 y2)
623 mid_y2 = (y2 y3)
624

625 slope_1 = (x2 - x1) / (y1 - y2);
626 slope_2 = (x2 - x3) / (y3 - y2);

NN~
NN NN

H

627

628 result [0] = ((mid_yl1 - slope_1 * mid_x1) - (mid_y2 - slope_2 * mid_x2)) /
629 (slope_2 - slope_1);

630 result [1] = (slope_1 * result[0]) + mid_yl - (slope_1 * mid_x1);

631 }

632

633 //finds a point on the line ab in the direction ab and stores in r.

634 void point_on_line(double al, double a2, double bl, double b2, double *r) {
635 double min;

636 double d, e;

637 d = (fabs(bl - al)
638 e = (fabs(b2 - a2)
639 min = d < e ?7d : e;

640 r[0] = (bt - al) * (25 / min) + al;

641 r[1] = (b2 - a2) * (25 / min) + a2;

642 }

643

644 //Stores the midpoint of Edge in e in array midpoint

645 void midpoint (double #*midpoint, Edge e) {

646 midpoint [0] = (p[2 * e.from] + p[2 * e.tol) / 2;

647 midpoint [1] = (p[2 * e.from + 1] + p[2 * e.to + 1]) / 2;

0) ? 10000 : fabs(bl - al);
0) ? 10000 : fabs(b2 - a2);

648 }

649

650 //Returns 1 if points (a_1,a_2), (b_1,b_2), (c_1,c_2) counter-clockwise, else
651 int is_counterclock(double a_1, double a_2,

652 double b_1, double b_2,

653 double c_1, double c_2) {

654 double al[3], b[3], c[3];

655 a0l = 1; al1]l = a_1; a[2] = a_
656 b[0] = 1; b[1] = b_1; b[2] = b_2;
657 cl0] = 1; c[1] = c_1; c[2] = c_2;

23
2

658 if (determinant(a,b,c) > 0) return 1;
659 else return O;
660 }

BBL /% koo ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o o o o K K K K K KK K SR oK ok ok ok o o o K K KK KKK K oK ok ok ok ok o o o K K K K K KKK oK ok ok
662 Finds a point on the perpendicular bisector of edge e,

663 belonging to a triangle with circumcentre cc, and stores the result in temp.
664 We guarantee that temp will form a clockwise triangle with e.

BB sk sk sk ok ok ok o o o o o K K kK ok ok ok ok ok ok ok o o o o o K K K K K KK oK oK ok ok ok ok ok o o o K K K K oK oK ok ok ok ok ok ok ok ok ok o o o K K K K K Kok ok ok ok K/
666 void point_on_bisector (Edge e, double *temp, double *cc) {

667 double slope;

668 /% 3k sk sk sk ok sk sk sk ok ok sk sk ok ok ok sk sk o ok sk ok sk ok ok sk sk s ok ok sk sk o ok sk sk sk ok ok sk ok sk ok ok sk sk ok ok ok sk sk ok ok sk ok ok K ok sk ok ok ok ok ok ok ok ok ok ok ok K K
669 Three cases, in order:

670 1. Circumcentre lies on vertical edge of triangle

671 2. Circumcentre lies on horizontal edge of triangle

672 3. Circumcentre lies on an angled edge of triangle

673 *************************************************************************/
674 if (p[2 * e.from] == p[2 * e.to]) {

675 temp [0] = cc[0] + 2;

676 temp [1] = cc[1];

677 ¥

678 else if (p[2 * e.from + 1] == p[2 * e.to + 1]1) {

679 temp [0] = cc[0];

680 temp[1] = cc[1] + 2;

681 ¥

682 else {

683 slope = (p[2 * e.from] - p[2 * e.tol) /

684 (pl[2 * e.to + 1] - p[2 *x e.from + 1]);

685 temp [0] = cc[0] + 2;

686 //y = y1 + m(x - x1)

687 temp[1] = cc[1] +

688 slope * (temp[0] - cc[0]);

689 }

690 //Makes sure the point lies on the correct side of edge e
691 if (is_counterclock(p[2 * e.from], p[2 * e.from + 1],

692 pl2 * e.tol, p[2 * e.to + 1],

693 temp [0], temp[11)) {

694 point_on_line (temp[0], temp[1], cc[0], ccl[1], temp);
695 ¥

696 }

697

698 //Finds an unbounded vertice corresponding to an unbounded edge

699 //formed by edge e in Triangle t, storing in r.

700 void compute_unbounded_vertice (Edge e, Triangle t, Polygon_2D *pg) {

701 double temp[2];

702 double cc[2];

703

704 midpoint (temp, e);

705 cc[0] = t.circum[0];

706 cc[1] = t.circum[1];

707 /*************************************************************************

o8



708 Three cases, in order:

709 1. circumcentre lies on the edge e of triangle.

710 2. circumcentre outside of triangle.

711 3. circumcentre inside triangle.

712 sk sk ok ok sk sk ok ok ok sk sk ok ok ok sk ok o ok ok ok sk ok ok sk ok sk ok ok sk sk ok ok ok sk ok ok ok ok ok sk ok ok ok sk sk ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok K /
713 if ((fabs(temp[0] - cc[0]) < 1e-7) && (fabs(temp[1] - cc[1]) < 1e-7)) {
714 point_on_bisector (e, temp, cc);

715 X

716 else if (is_counterclock (p[2 * e.from], p[2 * e.from + 1],

717 pl2 * e.tol, pl[2 * e.to + 1],

718 cclo], ccl11)) {

719 //reflect circumcentre about midpoint

720 point_on_line(cc[0], cc[1], temp[0], temp[1], temp);

721 ¥

722 else {

723 //reflect midpoint about circumcentre

724 point_on_line(temp[0], temp[1], cc[0], cc[1]l, temp);

725 ¥

726 add_to_polygon(temp[0], temp[1]l, pg);

727 '}

728

729 //finds the edges in *t that have v as a vertice, storing in r
730 void edges_with_vert(int v, Triangle *t, int *r) {

731 int count = 0;

732 if ((t->edge_1.from == v) || (t->edge_1.to == v)) rlcount++] = 0;
733 if ((t->edge_2.from == v) || (t->edge_2.to == v)) rlcount++] = 1;
734 if ((t->edge_3.from == v) || (t->edge_3.to == v)) rlcount++] = 2;
735 }

736

737 //Copies pgl into pg2, in reverse order of points.
738 void copy_pg._reverse (Polygon_2D *pgl, Polygon_2D *pg2) {
739 int i;

740 for(i = ((pgl->num_items / 2) - 1); i >= 0; --i) {

741 add_to_polygon(pgli->v[2 * i], pgl->v[2 * i + 1], pg2);
742 ¥

743 '}

744

745 //Copies pgl into pg2

746 void copy_pg(Polygon_2D #*pgl, Polygon_2D #*pg2) {

747 int i;

748 for(i = 0; i < (pgl->num_items/ 2); ++i) {

749 add_to_polygon(pgl->v[2 * il, pgl->v[2 * i + 1], pg2);

750 X

751}

752

753 //Computes the Voronoi region for v a vertice of triangle *start, storing in *pg
754 void voronoi_face(Triangle #*start, int v, Polygon_2D *pg, Polygon_2D *temp_pg) {
755 Triangle *current, *prev, *next;

756 //Will hold the indexes of the edges that share a particular vetice

757 int edges[2], start_edges[2];

758 int i = 0;

759 int done = 0;

760 Edge e;

761

762 if (start == NULL) {

763 fprintf (stderr, "ERROR: started with NULL triangle\n");

764 exit(-1);

765 X

766 temp_pg->num_items = 0;

767 add_to_polygon(start->circum[0], start->circum[1], temp_pg);

768 edges_with_vert (v, start, start_edges);

769 while((i < 2) && 'done) {//i == 0 first direction, i == 1 second direction
770 prev = start;

771 if (start->adjacent [start_edges[il] != NULL) {

772 next = start->adjacent[start_edges[il];

773 while (next != start) {//Not returned to starting point

774 current = next;

775 if (i == 1) add_to_polygon(current->circum[0], current->circum[1], pg);
776 else add_to_polygon(current->circum[0], current->circum[1], temp_pg);
777 edges_with_vert (v, current, edges);

778 if (current->adjacent [edges [0]] != prev) {

779 if (current->adjacent [edges [0]] == NULL) {

780 if (edges[0] == 0) e = current->edge_1;

781 else if(edges[0] == 1) e = current->edge_2;

782 else e = current->edge_3;

783 if (i == 1) compute_unbounded_vertice(e, *current, pg);
784 else {

785 compute_unbounded_vertice (e, *current, temp_pg);

786 copy_pg_reverse (temp_pg, pg);

787 ¥

788 pg->unbounded = 1;

789 break;

790 ¥

791 next = current->adjacent[edges[0]];

792 prev = current;

793 }

794 else if (current->adjacent[edges[1]] == prev) {

795 fprintf (stderr, "ERROR: incorrect adjacancy\n");

796 exit(-1);

797 }

798 else {

799 if (current->adjacent [edges [1]] == NULL) {

800 if (edges[1] == 0) e = current->edge_1;

801 else if (edges[1] == 1) e = current->edge_2;

802 else e = current->edge_3;

803 if (i == 1) compute_unbounded_vertice(e, *current, pg);
804 else {

805 compute_unbounded_vertice(e, *current, temp_pg);

806 copy_pg_reverse (temp_pg, pg);

29



807 ¥

808 pg->unbounded = 1;

809 break;

810 }

811 next = current->adjacent[edges[1]];

812 prev = current;

813 X

814 }

815 if (next == start) done = 1;

816 }

817 else {

818 if (start_edges[i] == 0) e = start->edge_1;
819 else if(start_edges[i] == 1) e = start->edge_2;
820 else e = start->edge_3;

821 if (4 == 1) {

822 compute_unbounded_vertice(e, *start, pg);
823 }

824 else {

825 compute_unbounded_vertice(e, *start , temp_pg);
826 copy_pg_reverse (temp_pg, pg);

827 }

828 pg->unbounded = 1;

829

830 ++1;

831 b

832 if (done) copy_pg(temp_pg, pg);

833 }

834

835 //Produces the voronoi diagram for our points.

836 void voromnoi () {

837 Triangle *t;

838 DLL_NODE #*node;

839 int count = 0;

840 double temp[2];

841 //Will hold if a vertice is domne.

842 int *done = calloc(num_points, sizeof (int));

843 Polygon_2D *temp_pg = make_polygon (3000) ;

844

845 voro = malloc(num_points * sizeof (Polygon_2D%*));
846 if (voro == NULL) {

847 fprintf (stderr, "ERROR: malloc failed\n");

848 exit (-1);

849 b

850

851 node = del->first;

852 while (node != NULL) {

853 circumcentre (temp, node->data);

854 node->data->circum[0] = temp[0];

855 node->data->circum[1] = temp[1];

856 node = node->next;

857 ¥

858

859 node = del->first;

860 while (node != NULL) {

861 t = node->data;

862 if (!done[t->vert_1]1) {

863 voro[count] = make_polygon (30);

864 voronoi_face(t, t->vert_1, vorol[count], temp_pg);
865 done [t->vert_1] = 1;

866 ++count ;

867 ¥

868 if (!done[t->vert_2]1) {

869 voro[count] = make_polygon (30) ;

870 voronoi_face(t, t->vert_2, vorol[count], temp_pg);
871 done [t->vert_2] = 1;

872 ++count ;

873

874 if ('done[t->vert_3]1) {

875 voro[count] = make_polygon (30);

876 voronoi_face(t, t->vert_3, vorol[count], temp_pg);
877 done [t->vert_3] = 1;

878 ++count ;

879 }

880 if (count == num_points) break;

881 node = node->next;

882 b

883 free (temp_pg);

884 }

885

886 //Drawing routines left out here, similar to 3D case.
887

888 //read_points and randomise left out here, just assume that p holds input
889 //Point set and num_p holds the number of points in p.

890

891 //Does memory allocation of global arrays and calls fucntions
892 int main() {

893 //Hilbert sorting of the array p

894 sort ();

895

896 //Computing the Delauany triangulation

897 del = make_list();

898 bowyer_watson () ;

899

900 //Computing the Voronoi diagram
901 voronoi () ;

902 return 0;

903 }

60



